Article
  • Degree of Unsaturation Dependence of Curing Reaction for Butyl Rubber Complexes
  • Sangho Lee, Hyun-Uk Jeon*, and Soo-Hyung Choi

  • Department of Chemical Engineering, Hongik University, Seoul 04066, Korea
    *Yongjin Fine Chemical Co., Ulsan 44785, Korea

  • 불포화도에 따른 부틸고무 복합체의 가교 반응 연구
  • 이상호 · 전현욱* · 최수형

  • 홍익대학교 화학공학과, *용진유화

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Sloan, J. M. Butyl Rubber: Compound Development and Characterization; U.S. Army Research Laboratory: Aberdeen Poroving Ground, MD, April 2000.
  •  
  • 2. Caron, P. A.; Larreteguy, A. E.; Porta, P. F. Cure Kinetics of Butyl Rubber Cured by Phenol Formaldehyde Resin. Lat. Am. Appl. Res. 2017, 47, 59-64.
  •  
  • 3. Dorko, Z. J.; Edwards, D. C.; Lumb, P. B. Faster Curing Butyl Rubber. Rubber Chem. Technol. 1962, 35, 705-715.
  •  
  • 4. Kim, S. M.; Cho, H. W.; Kim, J. W.; Kim, K. J. Effects of Processing Geometry on the Mechanical Properties and Silica Dispersion of Silica-Filled Isobutylene-Isoprene Rubber (IIR) Compounds. Elastomers. Compos. 2010, 45, 223-229.
  •  
  • 5. Imanifar, M.; Movahed, S. O.; Ahmadpour, A. Effects of Peroxide and Phenolic Cure Systems on Characteristics of the Filled Ethylene-Propylene-Diene Monomer Rubber (EPDM). J. Appl. Polym. Sci. 2018, 135, 46213-46221.
  •  
  • 6. Hinchiranan, N.; Lertweerasirikun, W.; Poonsawad, W.; Rempel, G. L.; Prasassarakich, P. Cure Characteristics and Mechanical Properties of Hydrogenated Natural Rubber/Natural Rubber Blends. J. Appl. Polym. Sci. 2009, 111, 2813-2821.
  •  
  • 7. Khang, T. H.; Ariff, Z. M. Vulcanization Kinetics Study of Natural Rubber Compounds Having Different Formulation Variables. J. Therm. Anal. Calorim. 2012, 109, 1545-1553.
  •  
  • 8. Formela, K.; Haponiuk, J. T. Curing Characteristics, Mechanical Properties and Morphology of Butyl Rubber Filled with Ground Tire Rubber (GTR). Iran Polym. J. 2014, 23, 185-194.
  •  
  • 9. Garratt, S.; Guerrero, A.; Hughes, D. L.; Bochmann, M. Arylzinc Complexes as New Initiator Systems for the Production of Isobutene Copolymers with High Isoprene Content. Angew. Chem. Int. Ed. 2004, 43, 2166-2169.
  •  
  • 10. Guerrero, A.; Kulbaba, K.; Bochmann, M. Alkyl Zinc Chlorides as New Initiators for the Polymerization and Copolymerization of Isobutene. Macromol. Chem. Phys. 2008, 209, 1714-1720.
  •  
  • 11. Tse, C. K. W.; Penciu, A.; McInenly, P. J.; Kumar, K. R.; Drewitt, M. J.; Baird, M. C. Isobutene Homo- and Isobutene-Isoprene Copolymerization Initiated by Protic Initiators Associated with a Series of Novel, Weakly Coordinating Counteranions. Eur. Polym. J. 2004, 40, 2653-2657.
  •  
  • 12. McInenly, P. J.; Drewitt, M. J.; Baird, M. C. High-Molecular-Weight Isobutene-Isoprene Copolymers Containing Unusually High Isoprene Content. Macromol. Chem. Phys. 2004, 205, 1707-1712.
  •  
  • 13. Mark, J. E. Polymer Data Handbook, 2nd ed.; Oxford University Press: New York, USA, 1999.
  •  
  • 14. Mrkvičková, L.; Lopour, P.; Pokorný, S.; Janča J. Gel Permeation Chromatography of Polyisobutylene in Tetrahydrofuran. Angew. Makromol. Chem. 1980, 90, 217-221.
  •  
  • 15. Ahmed, K.; Nizami, S. S.; Raza, N. Z.; Shirin K. Cure Characteristics, Mechanical and Swelling Properties of Marble Sludge Filled EPDM Modified Chloroprene Rubber Blends. Adv. Mater. Phys. Chem. 2012, 2, 90-97.
  •  
  • 16. Ayala, J. A.; Hess, W. M.; Kistler, F. D.; Joyce, G. A. Carbon-Black-Elastomer Interaction. Rubber Chem. Technol. 1991, 64, 19-39.
  •  
  • 17. Mitra, S.; Chattopadhyay, S.; Bhowmick, A. K. Synthesis and Characterization of Chemically Crosslinked Styrene-Butadiene Rubber Nanogels and their Effect on Various Properties of the Rubber. Rubber Chem. Technol. 2008, 81, 842-864.
  •  
  • 18. Mok, K. L.; Eng, A. H. Characterisation of Crosslinks in Vulcanised Rubbers: From Simple to Advanced Techniques. Mal. J. Chem. 2018, 20, 118-127.
  •  
  • 19. Lund, R.; Willner, L.; Lindner, P.; Richter, D. Structural Properties of Weakly Segregated PS-PB Block Copolymer Micelles in n-Alkanes: Solvent Entropy Effects. Macromolecules 2009, 42, 2686-2695.
  •  
  • 20. Kraus, G. Swelling of Filler-Reinforced Vulcanizates. J. Appl. Polym. Sci. 1963, 7, 861-871.
  •  
  • 21. Moon, B.; Lee, J.; Park, S.; Seok, C.-S. Study on the Aging Behavior of Natural Rubber/Butadiene Rubber (NR/BR) Blends Using a Parallel Spring Model. Polymers 2018, 10, 658.
  •  
  • 22. Mitra, S.; Chattopadhyay, S.; Bhowmick, A. K. Synthesis and Characterization of Chemically Crosslinked Styrene-Butadiene Rubber Nanogels and their Effect on Various Properties of the Rubber. Rubber Chem. Technol. 2008, 81, 842-864.
  •  
  • 23. Isayev, A. I.; Deng, J. S. Nonisothermal Vulcanization of Rubber Compounds. Rubber Chem. Technol. 1988, 61, 340-361.
  •  
  • 24. Yeoh, O. H. Mathematical Modeling of Vulcanization Characteri- stics. Rubber Chem. Technol. 2012, 85, 482-492.
  •  
  • 25. Su, W. F. Principles of Polymer Design and Synthesis, Springer: Heidelberg, Germany, 2013.
  •  
  • 26. Fisher, J. D. Phenolic Resins: A Century of Progress, Springer: Heidelberg, Germany, 2010.
  •  
  • 27. Tawney, P. O.; Little, J. R.; Viohl, P. The Vulcanization of Butyl Rubber with Phenol Formaldehyde Derivatives. Rubber Chem. Technol. 1960, 33, 229-236.
  •  
  • 28. Hopkins, W.; von Hellens, C. W. Curing of Butyl Rubber with a Phenolic Resin, European patent EP1016691A1, July 5, 2000.
  •  
  • 29. Fei, Z.; Long, C.; Qingyan, P.; Shugao, Z. J. Influence of Carbon Black on Crosslink Density of Natural Rubber. Macromol. Sci. B 2012, 51, 1208-1217.
  •  
  • 30. Zielińska, A. J.; Noordermeer, J. W. M.; Talma, A. G.; Van Duin, M. Crosslinking of Saturated Elastomers with Diazides. Part I: Mechanical Properties of Vulcanizates. Rubber Chem. Technol. 2011, 84, 243-257.
  •  
  • 31. Chaikumpollert, O.; Yamamoto, Y.; Suchiva, K.; Kawahara, S. Mechanical Properties and Cross-linking Structure of Cross-linked Natural Rubber. Polym. J. 2012, 44, 772-777.
  •  
  • 32. González, L.; Rodriguez, A.; Valentin, J. L.; Marcos-Fernández, A.; Posadas, P. Conventional and Efficient Crosslinking of Natural Rubber. KGK Rubberpoint 2005, 58, 638-646.
  •  
  • 33. Krongauz, V. V. Crosslink Density Dependence of Polymer Degradation Kinetics: Photocrosslinked Acrylates. Thermochim. Acta. 2010, 503-504, 70-84.
  •  
  • 34. Manaila, E.; Stelescu, M. D.; Craciun, G. Degradation Studies Realized on Natural Rubber and Plasticized Potato Starch Based Eco-Composites Obtained by Peroxide Cross-Linking. Int. J. Mol. Sci. 2018,19, 2862-2880.
  •  
  • 35. Krumova, M.; López, D.; Benavente, R.; Mijangos, C.; Pereña, J. Effect of Crosslinking on the Mechanical and Thermal Properties of Poly(vinyl alcohol). Polymer 2000, 41, 9265-9272.
  •  
  • 36. Rybiński, P.; Janowska, G. Effect of the Spatial Network Structure and Cross-link Density of Diene Rubbers on their Thermal Stability and Fire Hazard. J. Therm. Anal. 2014, 117, 377-386.
  •  
  • 37. Kamal, M. R.; Sourour, S. Kinetics and Thermal Characterization of Thermoset Cure. Polym. Eng. Sci. 1973, 13, 59-64.
  •  
  • 38. Ivan, G.; Bugaru, E.; Volintiru, T. A New Activation System for Resin Curing of Butyl Rubber. Acta Polym. 1988, 39, 647-651.
  •  
  • 39. Hu, J.; Shan, J.; Zhao, J.; Tong, Z. Isothermal Curing Kinetics of a Flame Retardant Epoxy Resin Containing DOPO Investigated by DSC and Rheology. Thermochim. Acta. 2016, 632, 56-63.
  •  
  • 40. Dziemidkiewicz, A.; Maciejewska, M.; Pingot, M. J. Thermal Analysis of Halogenated Rubber Cured with a new Cross-linking System. Therm. Anal. Calorim. 2018, 138, 4395-4405.
  •  
  • 41. Sathi, S. G.; Jang, J. Y.; Jeong, K.-U.; Nah, C. Thermally Stable Bromobutyl Rubber with a High Crosslinking Density Based on a 4,4′-Bismaleimidodiphenylmethane Curing Agent. J. Appl. Polym. Sci. 2016, 133, 44092-44105.
  •  
  • 42. Sathi, S. G.; Park, C.; Huh, Y. I.; Jeon, J.; Yun, C. H.; Won, J.; Jeong, K. U.; Nah, C. Enhancing the Reversion Resistance Crosslinking Density and Thermo-mechanical Properties of Accelerated Sulfur Cured Chlorobutyl Rubber Using 4,4′-Bis (maleimido) Diphenyl Methane. Rubber Chem. Technol. 2019, 92, 110-128.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(4): 552-559

    Published online Jul 25, 2021

  • 10.7317/pk.2021.45.4.552
  • Received on Feb 20, 2021
  • Revised on Apr 14, 2021
  • Accepted on Apr 15, 2021

Correspondence to

  • Soo-Hyung Choi
  • Department of Chemical Engineering, Hongik University, Seoul 04066, Korea

  • E-mail: shchoi@hongik.ac.kr