Article
  • Preparation and Anticancer Effect of Flufenamic Acid-loaded Chitosan Nanoparticle
  • Jun-Hyuk Anh, Jae-Woon Nah , and Gyeong-Won Jeong*,†

  • Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea
    *Department of Bioenvironmental & Chemical Engineering, Chosun College of Science and Technology, Gwangju 61453, Korea

  • 플루페나민산이 담지된 키토산 나노입자의 제조 및 항암 효과
  • 안준혁 · 나재운 · 정경원*,†

  • 순천대학교 공과대학 고분자공학과, *조선이공대학교 생명환경화공과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Michel, L.; Rassaf, T.; Totzeck, M. Biomarkers for the Detection of Apparent and Subclinical Cancer Therapy-related Cardiotoxicity. J. Thora. Dis. 2018, 10, S4282-S4295.
  •  
  • 2. Wang, J.; Zheng, Y.; Zhao, M. Exosome-Based Cancer Therapy: Implication for Targeting Cancer Stem Cells. Front. Pharmacol. 2016, 7, 533.
  •  
  • 3. Allahyari, H.; Heidari, S.; Ghamgosha, M.; Saffarian, P.; Amani, J. Immunotoxin: A New Tool for Cancer Therapy. Tumour Biology. 2017, 39, 1010428317692226.
  •  
  • 4. Kundranda, M. N.; Niu, J. Albumin-Bound Paclitaxel in Solid Tumors: Clinical Development and Future Directions. Drug Des. Devel. Ther. 2015, 9, 3767-3777.
  •  
  • 5. Silva, E. F.; Bazoni, R. F.; Ramos, E. B.; Rocha, M. S. DNA-Doxorubicin Interaction: New Insights and Peculiarities. Biopolymers. 2017, 107, e22998.
  •  
  • 6. Behnam, B.; Rezazadehkermani, M.; Ahmadzadeh, S.; Mokhtarzadeh, A.; Nematollahi-Mahani, S. N.; Pardakhty, A. Microniosomes for Concurrent Doxorubicin and Iron Oxide Nanoparticles Loading; Preparation, Characterization and Cytotoxicity Studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 118-125.
  •  
  • 7. Aboian, M. S.; Yu, J. F.; Gautam, A.; Sze, C. H.; Yang, J. K.; Chan, J.; Lillaney, P. V.; Jordan, C. D.; Oh, H. J.; Wilson, D. M.; Patel, A. S.; Wilson, M. W.; Hetts, S. W. In vitro Clearance of Doxorubicin with a DNA-Based Filtration Device Designed for Intravascular Use with Intra-Arterial Chemotherapy. Biomed. Microdevices 2016, 18, 98.
  •  
  • 8. Meredith, A. M.; Dass, C. R. Increasing Role of the Cancer Chemotherapeutic Doxorubicin in Cellular Metabolism. J. Pharm. Pharmacol. 2016, 68, 729-741.
  •  
  • 9. Saraiva, C. R.; Praca, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-Mediated Brain Drug Delivery: Overcoming Blood-Brain Barrier to Treat Neurodegenerative Diseases. J. Controlled Release. 2016, 235, 34-47.
  •  
  • 10. Matoba, T.; Koga, J. I.; Nakano, K.; Egashira, K.; Tsutsui, H. Nanoparticle-Mediated Drug Delivery System for Atherosclerotic Cardiovascular Disease. J. Cardiology. 2017, 70, 206-211.
  •  
  • 11. Mangal, S.; Gao, W.; Li, T.; Zhou, Q. T. Pulmonary Delivery of Nanoparticle Chemotherapy for the Treatment of Lung Cancers: Challenges and Opportunities. Acta Pharmacol. Sin. 2017, 38, 782-797.
  •  
  • 12. Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J. H.; Kwon, I. C. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics. 2019, 9, 8073-8090.
  •  
  • 13. Baetke, S. C.; Lammers, T.; Kiessling, F. Applications of Nanoparticles for Diagnosis and Therapy of Cancer. Brit. J. Radiol. 2015, 88, 20150207.
  •  
  • 14. Jeong, G. W.; Park, S. C.; Choi, C.; Nam, J. P.; Kim, T. H.; Choi, S. K.; Park, J. K.; Nah, J. W. Anticancer Effect of Gene/Peptide Co-Delivery System Using Transferrin-Grafted LMWSC. Int. J. Pharm. 2015, 488, 165-173.
  •  
  • 15. Mammeri, M.; Chevillot, A.; Thomas, M.; Polack, B.; Julien, C.; Marden, J. P.; Auclair, E.; Vallee, I.; Adjou, K. T. Efficacy of Chitosan, a Natural Polysaccharide, Against Cryptosporidium Parvum in vitro and in vivo in Neonatal Mice. Exp. Parasitol. 2018, 194, 1-8.
  •  
  • 16. Ribeiro, J. C. V.; Vieira, R. S.; Melo, I. M.; Araujo, V. M. A.; Lima, V. Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. Sci. World J. 2017, 8639898.
  •  
  • 17. Matica, M. A.; Aachmann, F. L.; Tondervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889.
  •  
  • 18. Cheung, R. C.; Ng, T. B.; Wong, J. H.; Chan, W. Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs. 2015, 13, 5156-5186.
  •  
  • 19. Shahid Ul, I.; Butola, B. S. Recent Advances in Chitosan Polysaccharide and its Derivatives in Antimicrobial Modification of Textile Materials. Int. J. Biol. Macromol. 2019, 121, 905-912.
  •  
  • 20. Jang, M. J.; Kim, D. G.; Jeong, Y. I.; Jang, M. K.; Nah, J. W. Preparation and Characterization of Low Molecular Weight Water Soluble Chitosan Gene Carrier Fractioned according to Molecular Weight. Polym. Korea 2007, 31, 555-561.
  •  
  • 21. Guinamard, R.; Simard, C.; Del Negro, C. Flufenamic Acid as an Ion Channel Modulator. Pharmacol. Ther. 2013, 138, 272-284.
  •  
  • 22. Sun, H.; Wei, Y.; Deng, H.; Xiong, Q.; Li, M.; Lahiri, J.; Fang, Y. Label-Free Cell Phenotypic Profiling Decodes the Composition and Signaling of an Endogenous ATP-Sensitive Potassium Channel. Sci. Rep. 2014, 4, 4934.
  •  
  • 23. Smolkova, R.; Zelenak, V.; Smolko, L.; Sabolova, D.; Kuchar, J.; Gyepes, R. Novel Zn(II) Complexes with Non-Steroidal Anti-Inflammatory Ligand, Flufenamic Acid: Characterization, topoisomerase I inhibition activity, DNA and HSA Binding Studies. J. Inorg. Biochem. 2017, 177, 143-158.
  •  
  • 24. Malinovskaja-Gomez, K.; Labouta, H. I.; Schneider, M.; Hirvonen, J.; Laaksonen, T. Transdermal Iontophoresis of Flufenamic Acid Loaded PLGA Nanoparticles. Eur. J. Pharm. Sci. 2016, 89, 154-162.
  •  
  • 25. Matsumoto, R.; Tsuda, M.; Yoshida, K.; Tanino, M.; Kimura, T.; Nishihara, H.; Abe, T.; Shinohara, N.; Nonomura, K.; Tanaka, S. Aldo-keto Reductase 1C1 Induced by Interleukin-1beta Mediates the Invasive Potential and Drug Resistance of Metastatic Bladder Cancer Cells. Sci. Rep. 2016, 6, 34625.
  •  
  • 26. Hendriks, C. M.; Penning, T. M.; Zang, T.; Wiemuth, D.; Grunder, S.; Sanhueza, I. A.; Schoenebeck, F.; Bolm, C. Pentafluorosulfanyl-Containing Flufenamic Acid Analogs: Syntheses Properties and Biological Activities. Bioorganic Med. Chem. Lett. 2015, 25, 4437-4440.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(5): 680-687

    Published online Sep 25, 2021

  • 10.7317/pk.2021.45.5.680
  • Received on Mar 8, 2021
  • Revised on Apr 4, 2021
  • Accepted on May 9, 2021

Correspondence to

  • Jae-Woon Nah and Gyeong-Won Jeong*
  • Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea
    *Department of Bioenvironmental & Chemical Engineering, Chosun College of Science and Technology, Gwangju 61453, Korea

  • E-mail: jwnah@sunchon.ac.kr, gwjeong@cst.ac.kr