Article
  • Control of Phase Transition Temperature of Poly(N-isopropylacrylamide) Based Polymers for Thermotropic Smart Window by Copolymerization with Hydrophilic/Hydrophobic Comonomers
  • Meejeong Kwon, Dowan Kim*,† , and Jinhwan Yoon

  • Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, and Graduate School of Chemistry Education, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
    *Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 460-30, Jongga-ro, Jung-gu, Ulsan 44429, Korea

  • 친수성/소수성 단량체 공중합을 통한 폴리(N-이소프로필아크릴아미드) 기반 열방성 스마트 윈도우 소재의 전이온도 조절
  • 권미정 · 김도완*,† · 윤진환

  • 부산대학교 교육대학원 화학교육전공, 대학원 화학소재학과, 플라스틱 정보 및 에너지 소재 연구소, 태양광에너지지속가능활용 연구센터 *한국화학연구원 바이오화학소재연구단

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Huovila, P. Buildings and Climate Change: Status, Challenges, and Opportunities. UNEP/Earthprint: Paris, 2007.
  •  
  • 2. Hočevar, M.; Krašovec, U. O. Cubic WO3 Stabilized by Inclusion of Ti: Applicable in Photochromic Glazing. Sol. Energy Mater. Sol. Cells 2016, 154, 57-64.
  •  
  • 3. Wu, L. Y.; Zhao, Q.; Huang, H.; Lim, R. Sol-gel Based Photo- chromic Coating for Solar Responsive Smart Window. Surf. Coat. Technol. 2017, 320, 601-607.
  •  
  • 4. Warwick, M. E.; Ridley, I.; Binions, R. The Effect of Transition Gradient in Thermochromic Glazing Systems. Energy Build. 2014, 77, 80-90.
  •  
  • 5. Panagopoulou, M.; Gagaoudakis, E.; Aperathitis, E.; Michail, I.; Kiriakidis, G.; Tsoukalas, D.; Raptis, Y. The Effect of Buffer Layer on the Thermochromic Properties of Undoped Radio Frequency Sputtered VO2 Thin Films. Thin Solid Films 2015, 594, 310-315.
  •  
  • 6. Zhang, J.; Li, J.; Chen, P.; Rehman, F.; Jiang, Y.; Cao, M.; Zhao, Y.; Jin, H. Hydrothermal Growth of VO2 Nanoplate Thermo- chromic Films on Glass With High Visible Transmittance. Sci. Rep. 2016, 6, 27898.
  •  
  • 7. Hao, Q.; Li, W.; Xu, H.; Wang, J.; Yin, Y.; Wang, H.; Ma, L.; Ma, F.; Jiang, X.; Schmidt, O. G. VO2/TiN Plasmonic Thermochromic Smart Coatings for Room‐temperature Applications. Adv. Mater. 2018, 30, 1705421.
  •  
  • 8. Seeboth, A.; Holzbauer, H. R. The Optical Behavior of Lyotropic Liquid Crystalline Polymer Gel Networks: Dependence on Temperature. Adv. Mater. 1996, 8, 408-411.
  •  
  • 9. Watanabe, H. Intelligent Window using a Hydrogel Layer for Energy Efficiency. Sol. Energy Mater. Sol. Cells 1998, 54, 203-211.
  •  
  • 10. Raicu, A.; Wilson, H. R.; Nitz, P.; Platzer, W.; Wittwer, V.; Jahns, E. Facade Systems with Variable Solar Control using Thermo- tropic Polymer Blends. Sol. Energy 2002, 72, 31-42.
  •  
  • 11. Park, M. J.; Char, K. Two Gel States of a PEO‐PPO‐PEO Triblock Copolymer Formed by Different Mechanisms. Macromol. Rapid Commun. 2002, 23, 688-692.
  •  
  • 12. Gong, X.; Li, J.; Chen, S.; Wen, W. Copolymer Solution-Based “Smart Window”. Appl. Phys. Lett. 2009, 95, 251907.
  •  
  • 13. Seeboth, A.; Ruhmann, R.; Mühling, O. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control. Materials 2010, 3, 5143-5168.
  •  
  • 14. Kim, D.; Lee, E.; Lee, H. S.; Yoon, J. Energy Efficient Glazing for Adaptive Solar Control Fabricated with Photothermotropic Hydrogels Containing Graphene Oxide. Sci. Rep. 2015, 5, 7646.
  •  
  • 15. Lee, E.; Kim, D.; Yoon, J. Stepwise Activation of Switchable Glazing by Compositional Gradient of Copolymers. ACS Appl. Mater. Interfaces 2016, 8, 26359-26364.
  •  
  • 16. Kim, D.; Lee, E.; Yoon, J. Optically Bistable Switching Glazing Achieved by Memory Function of Grafted Hydrogels. ACS Appl. Mater. Interfaces 2018, 10, 22711-22717.
  •  
  • 17. Kim, D.; Yoon, J. Flexible Adaptive Solar Control Smart-films Comprising Thermo-responsive Hydrogels with Silver Nao- patterned Substrates. Polym. Korea 2019, 43, 144-150.
  •  
  • 18. Deb, S. Electrochromic Characters of WO3. Appl. Opt. Suppl. 1969, 3, 193.
  •  
  • 19. Lampert, C. M. Electrochromic Materials and Devices for Energy Efficient Windows. Sol. Energy Mater. 1984, 11, 1-27.
  •  
  • 20. Azens, A.; Granqvist, C. Electrochromic Smart Windows: Energy Efficiency and Device Aspects. J. Solid State Electrochem. 2003, 7, 64-68.
  •  
  • 21. Ko, H. C.; Kang, M.; Moon, B.; Lee, H. Enhancement of Electrochromic Contrast of Poly(3,4‐Ethylenedioxythiophene) by Incorporating a Pendant Viologen. Adv. Mater. 2004, 16, 1712-1716.
  •  
  • 22. Baetens, R.; Jelle, B. P.; Gustavsen, A. Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-art Review. Sol. Energy Mater. Sol. Cells 2010, 94, 87-105.
  •  
  • 23. Patil, R. A.; Devan, R. S.; Liou, Y.; Ma, Y.-R. Efficient Electro- chromic Smart Windows of One-dimensional Pure Brookite TiO2 Nanoneedles. Sol. Energy Mater. Sol. Cells 2016, 147, 240-245.
  •  
  • 24. Huang, S.; Zhang, Q.; Li, P.; Ren, F.; Yurtsever, A.; Ma, D. High‐Performance Suspended Particle Devices Based on Copper‐Reduced Graphene Oxide Core-Shell Nanowire Electrodes. Adv. Energy Mater. 2018, 1703658.
  •  
  • 25. Vergaz, R.; Sanchez-Pena, J.-M.; Barrios, D.; Vazquez, C.; Contreras-Lallana, P. Modelling and Electro-optical Testing of Suspended Particle Devices. Sol. Energy Mater. Sol. Cells 2008, 92, 1483-1487.
  •  
  • 26. Barrios, D.; Vergaz, R.; Sanchez-Pena, J. M.; Granqvist, C. G.; Niklasson, G. A. Toward a Quantitative Model for Suspended Particle Devices: Optical Scattering and Absorption Coefficients. Sol. Energy Mater. Sol. Cells 2013, 111, 115-122.
  •  
  • 27. Kim, Y.-B.; Park, S.; Hong, J.-W. Fabrication of Flexible Polymer Dispersed Liquid Crystal Films using Conducting Polymer Thin Films as the Driving Electrodes. Thin Solid Films 2009, 517, 3066-3069.
  •  
  • 28. Park, S.; Hong, J. W. Polymer Dispersed Liquid Crystal Film for Variable-transparency Glazing. Thin Solid Films 2009, 517, 3183-3186.
  •  
  • 29. Schild, H. G. Poly(N-isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17, 163-249.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(5): 734-741

    Published online Sep 25, 2021

  • 10.7317/pk.2021.45.5.734
  • Received on Apr 18, 2021
  • Revised on May 15, 2021
  • Accepted on May 20, 2021

Correspondence to

  • Dowan Kim* and Jinhwan Yoon
  • Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, and Graduate School of Chemistry Education, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
    *Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 460-30, Jongga-ro, Jung-gu, Ulsan 44429, Korea

  • E-mail: dkim@krict.re.kr, jinhwan@pusan.ac.kr