Article
  • Study on Characteristic Changes of Contact Lenses According to Interpenetrating Polymer Network Time and Method Using Seaweed Polysaccharide
  • Na-Young Ko, Pil Heon Lee, A-Young Sung , and Hyun Mee Lee

  • Department of Optometry & Vision Science, College of Bio and Medical Science, Daegu Catholic University Hayang-Ro 13-13, Gyeongsan, Gyeongbuk 38430, Korea

  • 해조다당류를 이용한 상호침투 고분자 네트워크의 시간과 방법에 따른 콘택트렌즈의 특성변화 연구
  • 고나영 · 이필헌 · 성아영 · 이현미

  • 대구가톨릭대학교 안경광학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Omidian, H.; Rocca, J. G.; Park, K. Advances in Superporous Hydrogels. J. Control. Release 2005, 102, 3-12.
  •  
  • 2. Sirkecioglu, A; Mutlu, H. B.; Citak, C.; Citak, C.; Güner, F. S. Physical and Surface Properties of Polyurethane Hydrogels in Relation with Their Chemical Structure. Polym. Eng. Sci. 2014, 54, 1182-1191.
  •  
  • 3. Garrett, Q.; Laycock, B.; Garrett, R. W. Hydrogel Lens Monomer Constituents Modulate Protein Sorption. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1687-1695.
  •  
  • 4. Refojo M. F. Water Imbibition. In Contact Lenses: The CLAO Guide to Basic Science and Clinical Practice; Dabezies, O.H., Ed.; Grune and Stratton: New York, 1991, pp 1-4.
  •  
  • 5. Nichols, J. J.; Ziegler, C.; Mitchell, G. L.; Nichols, K. K. Self-Reported Dry Eye Disease across Refractive Modalities. Investig. Ophthalmol. Vis. Sci. 2005,46, 1911-1914.
  •  
  • 6. Carney, F. P.; Nash, W. L.; Sentell, K. B. The Adsorption of Major Tear Film Lipids in Vitro to Various Silicone Hydrogels Over Time. Investig. Ophthalmol. Vis. Sci. 2008, 49, 120-124.
  •  
  • 7. Maldonado-Codina, C.; Efron, N. Impact of Manufacturing Technology and Material Composition on The Clinical Performance of Hydrogel Lenses.Optom. Vis. Sci. 2004, 81, 442-454.
  •  
  • 8. Han, Y. A.; Lee, E. M.; Ji, B. C. Mechanical Properties of Semi-interpenetrating Polymer Network Hydrogels based on Poly(2-hydroxyethyl methacrylate) Copolymer and Chitosan.Fibers Polym. 2008, 9, 393-399.
  •  
  • 9. Sperling, L. H.; Hu, R. Interpenetrating Polymer Networks. In Polymer Blends Handbook; Utracki, L. A., Ed.; Springer: Dordrecht, 2003, pp 417-447.
  •  
  • 10. Matricardi, P.; Di Meo, C.; Coviello, T.; Hennink, W. E.; Alhaique, F. Interpenetrating Polymer Networks Polysaccharide Hydrogels for Drug Delivery and Tissue Engineering.Adv. Drug. Deliv. Rev. 2013, 65, 1172-1187.
  •  
  • 11. Sperling, L. H.; Mishra, V. The Current Status of Interpenetrating Polymer Networks. Polym. Advan. Techol. 1996, 7, 197-208.
  •  
  • 12. Thambi, T.; Phan, V. H.; Lee, D. S. Stimuli‐Sensitive Injectable Hydrogels Based on Polysaccharides and Their Biomedical Applications. Macromol. Rapid Commun. 2016, 37, 1881-1896.
  •  
  • 13. Silva, S. S.; Gomes, J. M.; Rodringues, L. C.; Reis, R. L. Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications. Mar. Drugs 2020, 18, 346-375.
  •  
  • 14. Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Drug Development from Marine Natural Products. Nat. Rev. Drug. Discov. 2009, 8, 69-85.
  •  
  • 15. Sahoo, D. R.; Biswal, T. Alginate and its Application to Tissue Engineering. SN Appl. Sci. 2021, 3, 1-19.
  •  
  • 16. Puscaselu, R. G.; Lobiue, A.; Dimian, M.; Covasa, M. Alginate: from Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417-2447.
  •  
  • 17. Khotimchenko, Tiasto, M.; Kalitnik, V. A.; Begun, M.; Khotimchenko, R.; Leonteva, E.; Bryukhovetskiy, I.; Khotimochenko, Y. Antitumor Potential of Carrageenans from Marine Red Algae. Carbohydr. Polym. 2020, 246, 116568-116584.
  •  
  • 18. Shchipunov, Y. A. Structure of Polyelectrolyte Complexes by the Example of Chitosan Hydrogels with lambda-carrageenan. Polym. Sci., Ser. A 2020, 62, 54-61.
  •  
  • 19. Kim, S. J.; Park, S. J.; Kim, S. I. Swelling Behavior of Interpenetrating Polymer Network Hydrogels Composed of Poly(vinyl alcohol) and Chitosan. React. Funct. Polym. 2003, 55, 53-59.
  •  
  • 20. Seredych, M.; Mikhalovska, L.; Mikalovsky, S.; Gogotsi, Y. Adsorption of Bovine Serum Albumin on Carbon-Based Materials. C-J Carbon Res. 2018, 4, 3-16.
  •  
  • 21. Efron, N.; Morgan, P.; Camerron, Lan, D. Oxygen Permeability and Water Content of Silicone Hydrogel Contact Lens Materials. Optom. Vis. Sci. 2007, 84, 328-337.
  •  
  • 22. Tran, N.-P.-D.; Ting, C.-C.; Lin, C.-H.; Yang, M.-C. A Novel Approach to Increase the Oxygen Permeability of Soft Contact Lenses by Incorporating Silica Sol. Polymers 2020, 12, 2087-2099.
  •  
  • 23. Lee, S. B.; Park, E. K.; Lim, Y. M.; Cho, S. K.; Kim, S. Y.; Lee, Y. M.; Nho, Y. C. Preparation of Alginate/poly(N-isopropylacryl- amide) Semi-interpenetrating and Fully Interpenetrating Polymer Network Hydrogels with γ-ray Irradiation and Their Swelling Behaviors.J. Appl. Polym. Sci. 2006, 100, 4439-4446.
  •  
  • 24. Hu, X.; Lu, L.; Xu, C.; Li, X. Mechanically Tough Biomacro- molecular IPN Hydrogel Fibers by Enzymatic and Ionic Crosslinking. Int. J. Biol. Macromol. 2015,72, 403-409.
  •  
  • 25. Hoffman, A. S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2002,54, 3-12.
  •  
  • 26. Fonn, D.; Bruce, A. S. A Review of the Holden-Mertz Criteria for Critical Oxygen Transmission. Eye Contact Lens 2005,31, 247-251.
  •  
  • 27. Tran, N.-P.-D.; Ting, C.-C.; Lin, C.-H.; Yang, M.-C. A Novel Approach to Increase the Oxygen Permeability of Soft Contact Lenses by Incorporating Silica Sol. Polymers 2020, 12, 2087-2097.
  •  
  • 28. Tranoudis, I.; Efron, N. Parameter Stability of Soft Contact Lenses Made from Different Materials. Cont. Lens Anterior Eye 2004,27, 115-131.
  •  
  • 29. Luensmann, D.; Jones, L.Albumin Adsorption to Contact Lens Materials: a Review.Cont. Lens Anterior Eye 2008,31, 179-187.
  •  
  • 30. Nicolson, P. C.; Vogt, J. Soft Contact Lens Polymers: an Evolution.Biomaterials 2001,22, 3273-3283.
  •  
  • 31. Allansmith, M. R.; Korb, D. R.; Greiner, J. V.; Henriquez, A. S.; Simon, M. A.; Finnemore, V. M. Giant Papillary Conjunctivitis in Contact Lens Wearers. Am. J. Ophthalmol. 1997, 83, 697-708.
  •  
  • 32. Noh, H.; Vogler, E. A. Volumetric Interpretation of Protein Adsorption: Competition from Mixtures and the Vroman Effect. Biomaterials 2007, 28, 405-422.
  •  
  • 33. Prime, K. L.; Whitesides, G. M. Self-assembled Organic Monolayers: Model Systems for Studying Adsorption of Proteins at Surfaces. Science 1991, 252, 1164-1167.
  •  
  • 34. Hohn, S.; Virtanen, S.; Boccaccini, A. Protein Adsorption on Magnesium and Its alloys: A Review. Appl. Surf. Sci. 2019,464, 212-219.
  •  
  • 35. Laurienzo, P. Marine Polysaccharides in Pharmaceutical Applications: An Overview. Mar. Drugs 2010, 8, 2435-2465.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(5): 775-782

    Published online Sep 25, 2021

  • 10.7317/pk.2021.45.5.775
  • Received on May 25, 2021
  • Revised on Jun 17, 2021
  • Accepted on Jul 7, 2021

Correspondence to

  • A-Young Sung and Hyun Mee Lee
  • Department of Optometry & Vision Science, College of Bio and Medical Science, Daegu Catholic University Hayang-Ro 13-13, Gyeongsan, Gyeongbuk 38430, Korea

  • E-mail: sayy@cu.ac.kr, hmlee@cu.ac.kr