Article
  • Pyrene-based Polymer Surfactant for Dispersion of CNT in the PVDF/CNT Nanocomposite
  • Sang-Ha Kim, Seung-Yeop Baek, and Soo-Young Park

  • Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical Engineering, Kyungpook University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea

  • PVDF/CNT 복합체의 CNT 분산성 향상을 위한 Pyrene 기반 고분자 분산제
  • 김상하 · 백승엽 · 박수영

  • 경북대학교 응용화학공학부 고분자공학전공

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Xiao, Y. Model-Based Virtual Thermal Sensors for Lithium-Ion Battery in EV Applications. IEEE Trans. Ind. Electron. 2015, 62, 3112-3122.
  •  
  • 2. Kim, S. B.; Na, B. K. Electrochemical Performance of Li4Ti5O12 with Graphene/CNT Addition for Lithium Ion Battery. Korean Chem. Eng. Res. 2017, 55, 430-435.
  •  
  • 3. Chi, M.; Nah, D. B.; Kil, S. C.; Kim, S. W. Li-Ion Traction Batteries for All-Electric Vehicle. J. Energy Eng. 2011, 20, 109-122.
  •  
  • 4. Jia, C. K.; Pan, F.; Zhu, Y. G.; Huang, Q.; Lu, L.; Wang, Q. High-Energy Density Nonaqueous All Redox Flow Lithium Battery Enabled with a Polymeric Membrane. Sci. Adv. 2015, 10.
  •  
  • 5. Goto, K.; Nakagawa, T.; Nakamura, O.; Kawata, S. An Implantable Power Supply with an Optically Rechargeable Lithium Battery. IEEE. Trans. Biomed. Eng. 2001, 48, 830-833.
  •  
  • 6. Mladenov, M.; Stoyanova, R.; Zhecheva, E.; Vassilev, S. Effect of Mg doping and MgO-surface Modification on the Cycling Stability of LiCoO2 Electrodes. Electrochem. Commun. 2001, 3, 410-416.
  •  
  • 7. MacNail, D. D.; Dahn, J. R. The Reactions of Li0.5CoO2 with Nonaqueous Solvents at Elevated Temperatures. J. Electrochem. Soc. 2002, 149, A912-A919.
  •  
  • 8. MacNail, D. D.; Christensen, L.; Landucci, J.; Paulsen, J. M.; Dahn, J. R. An Autocatalytic Mechanism for the Reaction of Lix CoO2 in Electrolyte at Elevated Temperature. J. Electrochem. Soc. 2000, 147, 970-979.
  •  
  • 9. Jung, M. Z.; Park, J. Y.; Lee, J. D. Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material. Korean Chem. Eng. Res. 2016, 54, 16-21.
  •  
  • 10. Rajendrana, S.; Sivakumar, P. An investigation of PVdF/PVC-Based Blend Electrolytes with EC/PC as Plasticizers in Lithium Battery Applications. Physica B Condens. Matter. 2008, 403, 509-516.
  •  
  • 11. Jiang, Z.; Carroll, B.; Abraham, K. M. Studies of Some Poly(vinylidene fluoride) Electrolytes. Electrochim. Acta 1997, 42, 2667-2677.
  •  
  • 12. David, L. W.; Marissa, W.; Li, J.; Zhijia, D.; Rose, E. R.; Kevin, A. H.; Nitin, M.; Linxiao, G.; Chengyu, M.; Ilias, B. Energy Storage Mater. 2020, 29, 254-265.
  •  
  • 13. Zan, G.; Clifton, B; Ningning, S.; Li, Y. Z. J.; Li, X. Cotton-textile-enabled Flexible Self-sustaining Power Packs via Roll-to-roll Fabrication. Nat. Commun. 2016, 7, 11586.
  •  
  • 14. Kim, S. H.; Woo, J. S.; Park, S. Y. Poly(phenylene sulfide) Graphite Composites with Graphite Nanoplatelets as a Secondary Filler for Bipolar Plates in Fuel Cell Applications. Macromol. Res. 2020, 28, 1010-1016.
  •  
  • 15. Oh, K. S.; Heo, S. I.; Yun, J. C.; Yang, Y. C.; Han, K. S. Adv. Compos. Mater. 2012, 17, 259.
  •  
  • 16. Kim, M. S.; Kang, G. H.; Park, H. W.; Park, Y. B.; Park, Y. H.; Yoon, K. H. Design, Manufacturing, and Characterization of High-Performance Lightweight Bipolar Plates Based on Carbon Nanotube-Exfoliated Graphite Nanoplatelet Hybrid Nanocomposites. J. Nanomater. 2012, 159737.
  •  
  • 17. Moisala, A.; Li, Q.; Kinloch, I. A.; Windle, A. H. Thermal and Electrical Conductivity of Single- and Multi-walled Carbon Nanotube-epoxy Composites. Compos. Sci. Technol. 2006, 66, 1285-1288.
  •  
  • 18. Scholta, J.; Rohland, B.; Trapp, V.; Focken, U. Investigations on Novel Low-cost Graphite Composite Bipolar Plates. J. Power Sources 1999, 84, 231.
  •  
  • 19. Dhakatea, S. R.; Mathura, R. B.; Kakatib, B. K.; Dhami, T. L. A Low-density Graphite-polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2007, 32, 4537.
  •  
  • 20. Huang, J.; Baird, D. G.; McGrath, J. E. Development of Fuel Cell Bipolar Plates from Graphite Filled Wet-lay Thermoplastic Composite Materials. J. Power Sources 2005, 150, 110.
  •  
  • 21. Kang, M. H.; Yeom, H. Y.; Na, H. Y.; Lee, S. Comparative Study of Physical Dispersion Method on Properties of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites. J. Polym. 2013, 37, 526-532.
  •  
  • 22. Choi, H. Park, M.; Lee, S. S.; Hong, S. C. Pyrene-containing Polystyrene Segmented Copolymer from Nitroxide Mediated Polymerization and its Application for the Noncovalent Function- alization of As-prepared Multiwalled Carbon Nanotubes. Eur. Polym. J. 2008, 44, 3087-3095.
  •  
  • 23. Huang, J.; Baird, D. G.; McGrath, J. E. Development of Fuel Cell Bipolar Plates from Graphite Filled Wet-lay Thermoplastic Composite Materials. J. Power Sources 2005, 150, 110.
  •  
  • 24. Ge, L.; Zhu, Z.; Li F.; Liu, S.; Li, W.; Tang, X.; Rudolph, V. Investigation of Gas Permeability in Carbon Nanotube (CNT) Polymer Matrix Membranes via Modifying CNTs with Functional Groups/Metals and Controlling Modification Location. J. Phys. Chem. C 2011, 115, 6661-6670.
  •  
  • 25. Weng, T. H.; Tseng, H. H.; Wey, M. Y. Preparation and Characterization of Multi-walled Carbon Nanotube/PBNPI Nanocomposite Membrane for H2/CH4 Separation. Int. J. Hydrog. Energy. 2009, 34, 8707-8715.
  •  
  • 26. Cong, H.; Radosz, M.; Towler, B. F.; Shen, Y. Sep. Polymer-inorganic Nanocomposite Membranes for Gas Separation. Sep. Purif. Technol. 2007, 55, 281-291.
  •  
  • 27. Chen, J.; Wang, M.; Liu, B.; Fan, Z.; Cui, K.; Kuang, Y. Platinum Catalysts Prepared with Functional Carbon Nanotube Defects, and Its Improved Catalytic Performance for Methanol Oxidation. J. Phys. Chem. B 2006, 110, 11775-11779.
  •  
  • 28. Charlier, J. C. Defects in Carbon Nanotubes. Acc. Chem. Res. 2002, 35, 1063-1069.
  •  
  • 29. Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Opening Carbon Nanotubes with Oxygen and Implications for Filling. Nature 1993, 362, 522-525.
  •  
  • 30. Lambin, P.; Fonseca, A.; Vigneron, J. P.; Nagy, J. B.; Lucas, A. A. Strutural and Electronic Properties of Bent Carbon Nanotubes. Chem. Phys. Lett. 1995, 245, 85-89.
  •  
  • 31. Saito, R.; Dresselhaus, M. S.; Dresselhaus, G. Tunneling Conductance of Connected Carbon Nanotubes. Phys. Rev. B 1996, 53, 2044-2049.
  •  
  • 32. Drew, M. Surfactant Science and Technology; WILEY: New Jersey, 2005, pp 50-54.
  •  
  • 33. Drew, M. Surfactant Science and Technology; WILEY: New Jersey, 2005, pp 54-63.
  •  
  • 34. Drew, M. Surfactant Science and Technology; WILEY: New Jersey, 2005, pp 66-69.
  •  
  • 35. Drew, M. Surfactant Science and Technology; WILEY: New Jersey, 2005, pp 69-74.
  •  
  • 36. Song, S.; Wan, C.; Zhang, Y. Non-covalent Functionalization of Graphene Oxide by Pyrene-block Copolymers for Enhancing Physical Properties of Poly(methyl methacrylate). RSC Adv. 2015, 97, 79947-79955.
  •  
  • 37. Park, J. S.; An, J. H.; Jang, K. S.; Lee, S. J. Rheological and Electrical Properties of Polystyrene Nanocomposites via Incorporation of Polymer-wrapped Carbon Nanotubes. Korea Aust. Rheol. J. 2019, 31, 111-118.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(5): 803-808

    Published online Sep 25, 2021

  • 10.7317/pk.2021.45.5.803
  • Received on Jun 1, 2021
  • Revised on Jul 22, 2021
  • Accepted on Jul 29, 2021

Correspondence to

  • Soo-Young Park
  • Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical Engineering, Kyungpook University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea

  • E-mail: psy@knu.ac.kr