Review
  • Review on Utilization of Fly Ash for Improvement of Mechanical and Thermal Properties of Polymer Composites
  • Yongha Kim and Sang Eun Shim

  • Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea

  • 고분자 복합재료의 기계적·열적 성질 강화를 위한 플라이 애쉬 활용 동향
  • 김용하 · 심상은

  • 인하대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Anadhan, S. Recent Trends in Fly Ash Utilization in Polymer Composites. Int. J. Waste Resour. 2014, 4, 1000149.
  •  
  • 2. Ahmaruzzaman, M. A. Review on the Utilization of Fly Ash. Prog. Energy Combust. Sci. 2010, 36, 327-363.
  •  
  • 3. Li, R.; Wang, L.; Yang, T.; Raninger, B. Investigation of MSWI Fly Ash Melting Characteristic by DSC-DTA. Waste Manag. 2007, 27, 1383-1392.
  •  
  • 4. Dindi, A.; Quang, D. V.; Vega, L. F.; Nashef, E.; Abu-Zahra, M. R. M. Applications of Fly Ash for CO2 Capture, Utilization, and Storage. J. CO2 Util. 2019, 29, 82-102.
  •  
  • 5. Yilmaz, A.; Degirmenci, N. Possibility of Using Waste Tire Rubber and Fly Ash with Portland Cement as Construction Materials. Waste Manag. 2009, 29, 1541-1546.
  •  
  • 6. McCarthy, M. J.; Dhir, R. K. Development of High Volume Fly Ash Cements for Use in Concrete Construction. Fuel. 2005, 84, 1423-1432.
  •  
  • 7. Singh, S. P.; Tripathy, D. P.; Ranjith, P. G. Performance Evaluation of Cement Stabilized Fly Ash-GBFS Mixes as a Highway Construction Material. Waste Manag. 2008, 28, 1331-1337.
  •  
  • 8. Iyer, R. S.; Scott, J. A. Power Station Fly Ash-A Review of Value-Added Utilization Outside of the Construction Industry. Resour. Conserv. Recycl. 2001, 31, 217-228.
  •  
  • 9. Bhattacharya, A. K.; Naiya, T. K.; Mandal, S. N.; Das, S. K. Adsorption, Kinetics and Equilibrium Studies on Removal of Cr(VI) from Aqueous Solutions Using Different Low-cost Adsorbents. Chem. Eng. J. 2008, 137, 529-541.
  •  
  • 10. Bayat, B. Comparative Study of Adsorption Properties of Turkish Fly Ashes: I. The Case of Nickel(II), Copper(II), and Zinc(II). J. Hazard. Mater. 2002, 95, 251-273.
  •  
  • 11. Papandreou, A.; Stournaras, C. J.; Panias, D. Copper and Cadmium Adsorption on Pellets Made from Fired Coal Fly Ash. J. Hazard. Mater. 2007, 148, 538-547.
  •  
  • 12. Aksu, Z.; Yener, J. A Comparative Adsorption/Biosorption Study of Mono-chlorinated Phenols onto Various Sorbents. Waste Manag. 2001, 21, 695-702.
  •  
  • 13. Dutta, B.; Basu, J. K.; DasGupta, S. Removal of Cresol from Aqueous Solution Using Fly Ash as Adsorbent: Experiments and Modeling. Sep. Sci. Technol. 2003, 38, 1345-1360.
  •  
  • 14. Querol, X.; Alastuey, A.; Fernández-Turiel, J. L.; López-Soler, A. Synthesis of Zeolites by Alkaline Activation of Ferro-aluminous Fly Ash. Fuel 1995, 74, 1226-1231.
  •  
  • 15. Chigondo, M.; Guyo, U.; Shumba, M.; Chigondo, F.; Nyamunda, B.; Moyo, M.; Nharingo, T. Synthesis and Characterisation of Zeolites from Coal Fly Ash (CFA). IRACST-Eng. Sci. Technol. An Int. J. 2013, 3, 714-718.
  •  
  • 16. Molina, A.; Poole, C. A Comparative Study Using Two Methods to Produce Zeolites from Fly Ash. Miner. Eng. 2004, 17, 167-173.
  •  
  • 17. Sarmah, M.; Baruah, B. P.; Khare, P. A Comparison between CO2 Capturing Capacities of Fly Ash Based Composites of MEA/DMA and DEA/DMA. Fuel Process. Technol. 2013, 106, 490-497.
  •  
  • 18. Lee, J.; Han, S. J.; Wee, J. H. Synthesis of Dry Sorbents for Carbon Dioxide Capture Using Coal Fly Ash and Its Performance. Appl. Energy 2014, 131, 40-47.
  •  
  • 19. Lior, N. Energy Resources and Use: The Present Situation and Possible Paths to the Future. Energy 2008, 33, 842-857.
  •  
  • 20. Sengupta, S.; Pal, K.; Ray, D.; Mukhopadhyay, A. Furfuryl Palmitate Coated Fly Ash Used as Filler in Recycled Polypropylene Matrix Composites. Compos. Part B Eng. 2011, 42, 1834-1839.
  •  
  • 21. Kulkarni, S. M.; Kishore. Effects of Surface Treatments and Size of Fly Ash Particles on the Compressive Properties of Epoxy Based Particulate Composites. J. Mater. Sci. 2002, 37, 4321-4326.
  •  
  • 22. Alkadasi, N. A. N.; Hundiwale, D. G.; Kapadi, U. R. Effect of Coupling Agent on the Mechanical Properties of Fly Ash-filled Polybutadiene Rubber. J. Appl. Polym. Sci. 2004, 91, 1322-1328.
  •  
  • 23. Yang, Y. F.; Gai, G. S.; Cai, Z. F.; Chen, Q. R. Surface Modification of Purified Fly Ash and Application in Polymer. J. Hazard. Mater. 2006, 133, 276-282.
  •  
  • 24. Kasar, A. K.; Gupta, N.; Rohatgi, P. K.; Menezes, P. L. A Brief Review of Fly Ash as Reinforcement for Composites with Improved Mechanical and Tribological Properties. JOM 2020, 72, 2340-2351.
  •  
  • 25. Qin, C.; Lu, W.; He, Z.; Qi, G.; Li, J.; Hu, X. Effect of Silane Treatment on Mechanical Properties of Polyurethane/Mesoscopic Fly Ash Composites. Polymers 2019, 11, 741.
  •  
  • 26. Gohatre, O. K.; Biswal, M.; Mohanty, S.; Nayak, S. K. Effect of Silane Treated Fly Ash on Physico-mechanical, Morphological, and Thermal Properties of Recycled Poly(vinyl chloride) Composites. J. Appl. Polym. Sci.2021, 138, e50387.
  •  
  • 27. Nath, D. C. D.; Bandyopadhyay, S.; Yu, A.; Blackburn, D.; White, C. High Strength Bio-composite Films of Poly(vinyl alcohol) Reinforced with Chemically Modified-fly Ash. J. Mater. Sci. 2010, 45, 1354-1360.
  •  
  • 28. Nath, D. C. D.; Bandyopadhyay, S.; Gupta, S.; Yu, A.; Blackburn, D.; White, C. Surface-coated Fly Ash Used as Filler in Biodegradable Poly(vinyl alcohol) Composite Films: Part 1-The Modification Process. Appl. Surf. Sci. 2010, 256, 2759-2763.
  •  
  • 29. Linak, W. P.; Miller, C. A.; Seames, W. S.; Wendt, J. O. L.; Ishinomori, T.; Endo, Y.; Miyamae, S. On Trimodal Particle Size Distributions in Fly Ash from Pulverized-coal Combustion. Proc. Combust. Inst. 2002, 29, 441-447.
  •  
  • 30. Bhatt, A.; Priyadarshini, S.; Mohanakrishnan A. A.; Abri, A.; Sattler, M.; Techapaphawit, S. Physical, Chemical, and Geo- technical Properties of Coal Fly Ash: A Global Review. Case Stud. Constr. Mater. 2019, 11, e00263.
  •  
  • 31. Vassilev, S. V. ; Vassileva, C. G. A New Approach for the Classi- fication of Coal Fly Ashes Based on Their Origin, Composition, Properties, and Behaviour. Fuel 2007, 86, 1490-1512.
  •  
  • 32. Vassilev, S. V.; Vassileva, C. G. Methods for Characterization of Composition of Fly Ashes from Coal-fired Power Stations: A Critical Overview. Energy Fuels 2005, 19, 1084-1098.
  •  
  • 33. Wang, S.; Ma, Q.; Zhu, Z. H. Characteristics of Coal Fly Ash and Adsorption Application. Fuel 2008, 87, 3469-3473.
  •  
  • 34. Franus, W.; Wiatros-Motyka, M. M.; Wdowin, M. Coal Fly Ash as a Resource for Rare Earth Elements. Environ. Sci. Pollut. Res. 2015, 22, 9464-9474.
  •  
  • 35. Bentz, D. P.; Hansen, A. S.; Guynn, J. M. Optimization of Cement and Fly Ash Particle Sizes to Produce Sustainable Concretes. Cem. Concr. Compos. 2011, 33, 824-831.
  •  
  • 36. Erdoğdu, K.; Türkera, P. Effects of Fly Ash Particle Size on Strength of Portland Cement Fly Ash Mortars. Cem. Concr. Res. 1998, 28, 1217-1222.
  •  
  • 37. Bae, S.; Meral, C.; Oh, J. E.; Moon, J.; Kunz, M.; Monteiro, P. J. M. Characterization of Morphology and Hydration Products of High-volume Fly Ash Paste by Monochromatic Scanning X-ray Micro-diffraction (μ-SXRD). Cem. Concr. Res. 2014, 59, 155-164.
  •  
  • 38. Lee, C. Y.; Lee, K.; Lee, M. Strength and Microstructural Characteristics of Chemically Activated Fly Ash-cement Systems. Cem. Concr. Res. 2003, 33, 425-431.
  •  
  • 39. Tishmack, J. K.; Olek, J.; Diamond, S. Characterization of High-calcium Fly Ashes and Their Potential Influence on Ettringite Formation in Cementitious Systems. Cem. Concr. Aggregates. 1999, 21, 82-92.
  •  
  • 40. Illikainen, M.; Tanskanen, P.; Kinnunen, P.; Körkkö, M.; Peltosaari, O.; Wigren, V.; Österbacka, J.; Talling, B.; Niinimäki, J. Reactivity and Self-hardening of Fly Ash from the Fluidized Bed Com- bustion of Wood and Peat. Fuel 2014, 135, 69-75.
  •  
  • 41. Adeosun, S. O.; Usman, M. A.; Akpan, E. I.; Dibie, W. I. Characterization of LDPE Reinforced with Calcium Carbonate-Fly Ash Hybrid Filler. J. Miner. Mater. Charact. Eng. 2014, 2, 334-354.
  •  
  • 42. Sim, J.; Kang, Y.; Kim, B. J.; Park, Y. H.; Lee, Y. C. Preparation of Fly Ash/Epoxy Composites and Its Effects on Mechanical Properties. Polymers 2020, 12, 79.
  •  
  • 43. Kim, Y.; Hwang, S.; Choi, J.; Lee, J.; Yu, K.; Baeck, S. H.; Shim, S. E.; Qian, Y. Valorization of Fly Ash as a Harmless Flame Retardant via Carbonation Treatment for Enhanced Fire-proofing Performance and Mechanical Properties of Silicone Composites. J. Hazard. Mater. 2021, 404, 124202.
  •  
  • 44. Thongsang, S.; Sombatsompop, N. Effect of NaOH and Si69 Treatments on the Properties of Fly Ash/Natural Rubber Composites. Polym. Compos. 2006, 27, 30-40.
  •  
  • 45. Shubham, P.; Tiwari, S. K. Effect of Unsilanized and Silanized Fly Ash on Damping Properties of Fly Ash Filled Fiber Reinforced Epoxy Composite. Int. Conf. Adv. Aeronaut. Mech. Eng. 2012, 20-24.
  •  
  • 46. Goh, C. K.; Valavan, S. E.; Low, T. K.; Tang, L. H. Effects of Different Surface Modification and Contents on Municipal Solid Waste Incineration Fly Ash/Epoxy Composites. Waste Manag. 2016, 58, 309-315.
  •  
  • 47. Wong, K. W. Y.; Truss, R. W. Effect of Flyash Content and Coupling Agent on the Mechanical Properties of Flyash-filled Polypropylene. Compos. Sci. Technol. 1994, 52, 361-368.
  •  
  • 48. Pardo, S. G.; Bernal, C.; Ares, A.; Abad, M. J.; Cano, J. Rheological, Thermal, and Mechanical Characterization of Fly Ash-thermoplastic Composites with Different Coupling Agents. Polym. Compos. 2010, 31, 1722-1730.
  •  
  • 49. Atikler, U.; Basalp, D.; Tihminlioǧlu, F. Mechanical and Morpho- logical Properties of Recycled High-density Polyethylene, Filled with Calcium Carbonate and Fly Ash. J. Appl. Polym. Sci. 2006, 102, 4460-4467.
  •  
  • 50. Satapathy, S.; Nando, G. B.; Nag, A.; Raju, K. V. S. N. HDPE-Fly Ash/Nano Fly Ash Composites. J. Appl. Polym. Sci. 2013, 130, 4558-4567.
  •  
  • 51. Sharma, A. K.; Mahanwar, P. A. Effect of Particle Size of Fly Ash on Recycled Poly(ethylene terephthalate)/Fly Ash Composites. Int. J. Plast. Technol. 2010, 14, 53-64.
  •  
  • 52. Kishore, S.; Kulkarni, M.; Sunil, D.; Sharathchandra, S. Effect of Surface Treatment on the Impact Behaviour of Fly-ash Filled Polymer Composites. Polym. Int. 2002, 51, 1378-1384.
  •  
  • 53. Chaowasakoo, T.; Sombatsompop, N. Mechanical and Morpho- logical Properties of Fly Ash/Epoxy Composites Using Conven- tional Thermal and Microwave Curing Methods. Compos. Sci. Technol. 2007, 67, 2282-2291.
  •  
  • 54. Bonda, S.; Mohanty, S.; Nayak, S. K. Viscoelastic, Mechanical, and Thermal Characterization of Fly Ash-filled ABS Composites and Comparison of Fly Ash Surface Treatments. Polym. Compos. 2012, 33, 22-34.
  •  
  • 55. Yang, S.; Liang, P.; Peng, X.; Zhou, Y.; Hua, K.; Wu, W.; Cai, Z. Improvement in Mechanical Properties of SBR/Fly Ash Com- posites by in-situ Grafting-neutralization Reaction. Chem. Eng. J. 2018, 354, 849-855.
  •  
  • 56. Yang, S.; Tian, J.; Bian, X.; Wu, Y. High Performance NBR/Fly Ash Composites Prepared by an Environment-friendly Method. Compos. Sci. Technol. 2020, 186, 107909.
  •  
  • 57. Patel, P.; Hull, T. R.; Stec, A. A.; Lyon, R. E. Influence of Physical Properties on Polymer Flammability in the Cone Calorimeter. Polym. Adv. Technol. 2011, 22, 1100-1107.
  •  
  • 58. Usta, N. Investigation of Fire Behavior of Rigid Polyurethane Foams Containing Fly Ash and Intumescent Flame Retardant by Using a Cone Calorimeter. J. Appl. Polym. Sci. 2012, 124, 3372-3382.
  •  
  • 59. Surtiyeni, N.; Rahmadani, R.; Kurniasih, N.; Khairurrijal; Abdullah, M. A Fire-retardant Composite Made from Domestic Waste and PVA. Adv. Mater. Sci. Eng. 2016, 2016, 7516278.
  •  
  • 60. Soyama, M.; Inoue, K.; Iji, M. Flame Retardancy of Poly- carbonate Enhanced by Adding Fly Ash. Polym. Adv. Technol. 2007, 18, 386-391.
  •  
  • 61. Jiao, C.; Wang, H.; Chen, X. Preparation of Modified Fly Ash Hollow Glass Microspheres Using Ionic Liquids and Its Flame Retardancy in Thermoplastic Polyurethane. J. Therm. Anal. Calorim. 2018, 133, 1471-1480.
  •  
  • 62. Nguyen, T. A.; Nguyen, Q. T.; Nguyen, X. C.; Nguyen, V. H. Study on Fire Resistance Ability and Mechanical Properties of Composites Based on Epikote 240 Epoxy Resin and Thermoelectric Fly Ash: An Ecofriendly Additive. J. Chem. 2019, 2019, 2635231.
  •  
  • 63. Mishra, S.; Sonawane, S. H.; Badgujar, N.; Gurav, K.; Patil, D. Comparative Study of the Mechanical and Flame-retarding Properties of Polybutadiene Rubber Filled with Nanoparticles and Fly Ash. J. Appl. Polym. Sci. 2005, 96, 6-9.
  •  
  • 64. Divya, V. C.; Khan, M. A.; Rao, B. N.; Sailaja, R. R. N.; Vynatheya, S.; Seetharamu, S. Fire Retardancy Characteristics and Mechanical Properties of High-density Polyethylene/Ultrafine Fly Ash/MWCNT Nanocomposites. Polym. Plast. Technol. Eng. 2017, 56, 762-776.
  •  
  • 65. Deepthi, M. V.; Sharma, M.; Sailaja, R. R. N.; Anantha, P.; Sampathkumaran, P.; Seetharamu, S. Mechanical and Thermal Characteristics of High Density Polyethylene-Fly Ash Cenospheres Composites. Mater. Des. 2010, 31, 2051-2060.
  •  
  • 66. Parvaiz, M. R. Influence of Silane-coupling Agents on the Performance of Morphological, Mechanical, Thermal, Electrical, and Rheological Properties of Polycarbonate/Fly Ash Composites. Polym. Compos.2012, 33, 1798-1808.
  •  
  • 67. Sarbak, Z.; Kramer-Wachowiak, M. Porous Structure of Waste Fly Ashes and Their Chemical Modifications. Powder Technol. 2002, 123, 53-58.
  •  
  • 68. Patil, A. G.; Mahendran, A.; Anandhan, S. Nanostructured Fly Ash as Reinforcement in a Plastomer-based Composite: A New Strategy in Value Addition to Thermal Power Station Fly Ash. Silicon. 2016, 8, 159-173.
  •  
  • 69. Satapathy, S.; Nag, A.; Nando, G. B. Effect of Electron Beam Irradiation on the Mechanical, Thermal, and Dynamic Mechanical Properties of Flyash and Nanostructured Fly Ash Waste Poly- ethylene Hybrid Composites. Polym. Compos. 2012, 33, 109-119.
  •  
  • 70. Parvaiz, M. R.; Mohanty, S.; Nayak, S. K.; Mahanwar, P. A. Effect of Surface Modification of Fly Ash on the Mechanical, Thermal, Electrical, and Morphological Properties of Polyetheretherketone Composites. Mater. Sci. Eng. A 2011, 528, 4277-4286.
  •  
  • 71. Yang, S.; Liang, P.; Hua, K.; Peng, X.; Zhou, Y.; Cai, Z. Preparation of Carboxylated Nitrile Butadiene Rubber/Fly Ash Composites by in-situ Carboxylate Reaction. Compos. Sci. Technol. 2018, 167, 294-300.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2020 Impact Factor : 0.493
  • Indexed in SCIE

This Article

  • 2021; 45(6): 809-816

    Published online Nov 25, 2021

  • 10.7317/pk.2021.45.6.809
  • Received on Aug 25, 2021
  • Revised on Sep 7, 2021
  • Accepted on Sep 7, 2021

Correspondence to

  • Sang Eun Shim
  • Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea

  • E-mail: seshim@inha.ac.kr