Article
  • Fabrication of Tubular Scaffolds with Aligned Fibrous Structures Containing Cells within Pockets Using Electrohydrodynamic Methods
  • Inseong Choi*, **, Guk Young Ahn*, **, Dong-Hyun Paik*, **, and Sung-Wook Choi*, **,†

  • *Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu,
    Bucheon-si, Gyeonggi-do 14662, Korea
    **Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu,
    Bucheon-si, Gyeonggi-do 14662, Korea

  • 전기유체역학적 기법을 이용한 정렬된 섬유구조체를 갖는 세포 함유 스캐폴드 제조
  • 최인성*, ** · 안국영*, ** · 백동현*, ** · 최성욱*, **,†

  • *가톨릭대학교 바이오메디컬화학공학과, **가톨릭대학교 생명공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Agarwal, S; Wendorff, J. H.; Greiner, A. Progress in the Field of Electrospinning for Tissue Engineering Applications. Adv. Mater. 2009, 21, 3343-3351.
  •  
  • 2. Teo, W. E.; Inai, R. Ramakrishna S. Technological Advances in Electrospinning of Nanofibers. Sci. Technol. Adv. Mater. 2011, 12, 013002.
  •  
  • 3. Ahn, G. Y.; Ryu, T. K.; Choi, Y. R.; Lee, M. J.; Choi, S. W. Fabrication and Optimization of Nanodiamonds-composited Poly(ε-caprolactone) Fibrous Matrices for Potential Regeneration of Hard Tissue. Biomater. Res. 2018,22, 16.
  •  
  • 4. Nisbet, D. R.; Forsythe, J. S. Review Paper: A Review of the Cellular Response on Electrospun Nanofibers for Tissue Engineering. J. Biomater. Appl. 2009, 24, 7.
  •  
  • 5. Yang, F.; Murugan, R.; Wang, C.; Ramakrishna, S. Electrospinning of Nano/Micro Scale Poly(L-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials 2005, 26, 2603-2610.
  •  
  • 6. Li, W.; Tuli, R.; Okafor, C.; Derfoul, A.; Danielson, K. G.; Hall, D. J.; Tuan, R. S. A Three-Dimensional Nanofibrous Scaffold for Cartilage Tissue Engineering Using Human Mesenchymal Stem Cells. Biomaterials 2005, 26, 599-609.
  •  
  • 7. Xu, C. Y.; Inai, R.; Kotaki, M.; Ramakrishna, S. Aligned Biodegradable Nanofibrous Structure: A Potential Scaffold for Blood Vessel Engineering. Biomaterials 2004, 25, 877-886.
  •  
  • 8. Sosnik, A. Production of Drug-loaded Polymeric Nanoparticles by Electrospraying Technology. J. Biomed. Nanotechnol. 2014, 10, 2200-2217.
  •  
  • 9. Wang, J.; Jansen, J. A.; Yang, F. Electrospraying: Possibilities and Challenges of Engineering Carriers for Biomedical Applications - A Mini Review. Front. Chem. 2019, 7, 258.
  •  
  • 10. Yunmin, M.; Yuanyan, L.; Haiping, C.; Qingxi, H. Application and Analysis of Biological Electrospray in Tissue Engineering. Open Biomed. Eng. J. 2015, 9, 133-157.
  •  
  • 11. Bock, N.; Woodruff, M. A.; Steck, R.; Hutmacher, D. W.; Farrugia, B. L.; Dargaville, T. R. Composites for Delivery of Therapeutics: Combining Melt Electrospun Scaffolds with Loaded Electrosprayed Microparticles. Macromol. Biosci. 2014, 14, 202-214.
  •  
  • 12. Malakhov, S. N.; Khomenko, A. Y.; Belousov, S. I.; Prazdnichnyi, A. M.; Chvalun, S. N.; Shepelev, A. D.; Budyka, A. K. Method of Manufacturing Nonwovens by Electrospinning from Polymer Melts. Fibre Chem. 2009, 41, 355-359.
  •  
  • 13. Shi, X.; Zhou, W.; Ma, D.; Ma, Q.; Bridges, D.; Ma, Y.; Hu, A. Electrospinning of Nanofibers and Their Applications for Energy Devices. J. Nanomater. 2015, 140716.
  •  
  • 14. Lee, Y. H.; Lee, J. H.; An, I. G.; Kim, C.; Lee, D. S.; Lee, Y. K.; Nam, J. D. Electrospun Dual-porosity Structure and Bio- degradation Morphology of Montmorillonite Reinforced PLLA Nanocomposite Scaffolds. Biomaterials 2005, 26, 3165-3172.
  •  
  • 15. Baker, B. M.; Gee, A. O.; Metter, R. B.; Nathan, A. S.; Marklein, R. A.; Burdick, J. A.; Mauck, R. L. The Potential to iMprove Cell Infiltration in Composite Fiber-aligned Electrospun Scaffolds by the Selective Removal of Sacrificial Fibers. Biomaterials 2008, 29, 2348-2358.
  •  
  • 16. Jeong, K. Y.; Paik, D. H.; Choi, S. W. Fabrication of Tubular Scaffolds with Controllable Fiber Orientations Using Electro- spinning for Tissue Engineering. Macromol. Mater. Eng. 2014, 299, 1425-1429.
  •  
  • 17. Vaz, C. M.; Tuijl, S. V.; Bouten, C. V. C.; Baaijens, F. P. T. Design of Scaffolds for Blood Vessel Tissue Engineering Using a Multi-layering Electrospinning Technique. Acta Biomater. 2005, 1, 575-582.
  •  
  • 18. Bhattacharjee, M.; Miot, S.; Gorecka, A.; Singha, K.; Loparic, M.; Dickinson, S.; Das, A.; Bhavesh, N. S.; Ray, A. R.; Martin, I.; Ghosh, S. Oriented Lamellar Silk Fibrous Scaffolds to Drive Cartilage Matrix Orientation: Towards Annulus Fibrosus Tissue Engineering. Acta Biomater. 2012, 8, 3313-3325.
  •  
  • 19. Huang, C.; Tang, Y.; Liu, X.; Sutti, A.; Ke, Q.; Mo, X.; Wang, X.; Morsic, Y.; Lin, T. Electrospinning of Nanofibres with Parallel Line Surface Texture for Improvement of Nerve Cell Growth. Soft Matter. 2011, 7, 10812.
  •  
  • 20. Madduri, S.; Papaloïzos, M.; Gander, B. Trophically and Topographically Functionalized Silk Fibroin Nerve Conduits for Guided Peripheral Nerve Regeneration. Biomaterials 2010, 31, 2323-2334.
  •  
  • 21. Wang, H. B.; Mullins, M. E.; Cregg, J. M.; McCarthy, C. W.; Gilbert, R. J. Varying the Diameter of Aligned Electrospun Fibers Alters Neurite Outgrowth and Schwann Cell Migration. Acta Biomater. 2010, 6, 2970-2978.
  •  
  • 22. Wang, K.; Zhu, M.; Li, T.; Zheng, W.; Li, L.; Xu, M.; Zhao, Q.; Kong, D.; Wang, L. Improvement of Cell Infiltration in Electrospun Polycaprolactone Scaffolds for the Construction of Vascular Grafts. J. Biomed. Nanotechnol. 2014, 10, 1588-1598.
  •  
  • 23. Stankus, J. J.; Guan, J.; Fujimoto, K.; Wagner, W. R. Microinteg- rating Smooth Muscle Cells into a Biodegradable, Elastomeric Fiber Matrix. Biomaterials 2006, 27, 735-744.
  •  
  • 24. Baker, B. M.; Mauck, R. L. The Effect of Nanofiber Alignment on the Maturation of Engineered Meniscus Constructs. Biomaterials 2007, 28, 1967-1977.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2020 Impact Factor : 0.493
  • Indexed in SCIE

This Article

  • 2021; 45(6): 904-909

    Published online Nov 25, 2021

  • 10.7317/pk.2021.45.6.904
  • Received on Jun 29, 2021
  • Revised on Jul 30, 2021
  • Accepted on Aug 13, 2021

Correspondence to

  • Sung-Wook Choi
  • *Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu,
    Bucheon-si, Gyeonggi-do 14662, Korea
    **Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu,
    Bucheon-si, Gyeonggi-do 14662, Korea

  • E-mail: choisw@catholic.ac.kr