Article
  • Study on Variable Stiffness Mechanism Using Magnetorheological Elastomer
  • Dahoon Ahn, Yujeong Shin*, and Kyungwho Choi**,†

  • Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31080, Korea
    *
    Korea Railroad Research Institute, 176, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do 16105, Korea
    **
    Korea Aerospace University, 76, Hanggongdaehak-ro, Deogyang-gu, Goyang-si, Gyeonggi-do 10540, Korea

  • 자기유변 탄성체를 이용한 가변강성 기구에 대한 연구
  • 안다훈 · 신유정* · 최경후**,†

  • 공주대학교, *한국철도기술연구원, **한국항공대학교

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Rabinow, J. The Magnetic Fluid Clutch. Trans. AIEE 1948, 67, 1308-1315.
  •  
  • 2. Dezheng, H.; Xinhua, L.; Zengqiang, L.; Pawel, F.; Anna, H.-S.; Zhixiong, L. A Review on Structural Configurations of Magnetorheological Fluid Based Devices Reported in 2018-2020. Front. Mater. 2021, 8, 24.
  •  
  • 3. Wang, J.; Meng, G. Magnetorheological Fluid Devices: Principles, Characteristics and Applications in Mechanical Engineering. Proc. Inst. Mech. Eng. L. 2001, 215, 165-174.
  •  
  • 4. Rigbi, Z.; Jilken, L. The Response of an Elastomer Filled with Soft Ferrite to Mechanical and Magnetic Influences. J. Magn. Magn. Mater. 1983, 37, 267-276.
  •  
  • 5. Jolly, M. R.; Carlson, J. D.; Muñoz, B. C.; Bullions, T. A. The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix. J. Intell. Mater. Syst. Struct. 1996, 7, 613-622.
  •  
  • 6. Lian, C.; Lee, K.-H.; Choi, S.-B.; Lee, C.-H. A study of the Magnetic Fatigue Properties of a Magnetorheological Elastomer. J. Intell. Mater. Syst. Struct. 2019, 30, 749-754.
  •  
  • 7. Samal, S.; Škodová, M.; Blanco, I. Effects of Filler Distribution on Magnetorheological Silicon-Based Composites. Materials 2019, 12, 3017.
  •  
  • 8. Tao, Y.; Rui, X.; Yang, F.; Chen, G.; Bian, L.; Zhu, W.; Wei, M. Design and Experimental Research of a Magnetorheological Elastomer Isolator Working in Squeeze/elongation-shear Mode. J. Intell. Mater. Syst. Struct. 2018, 29, 1418-1429.
  •  
  • 9. Shi, G.; Wang, W.; Lu, H.; Wang, G.; Yang, F.; Rui, X. Study of Crosslink Structure and Dynamic Mechanical Properties of Magnetorheological Elastomer: Effect of Vulcanization System. J. Intell. Mater. Syst. Struct. 2019, 30, 1189-1199.
  •  
  • 10. Zhong, H.; Pei, Y.; Hu, Z.; Zhang, P.; Guo, J.; Gong, X.; Zhao, Y. A Study of the Heat Transfer Properties of CIP Doped Magnetorheological Elastomers. Smart Mater. Struct. 2019, 28, 025027.
  •  
  • 11. Yu, M.; Yang, P.; Fu, J.; Liu, S.; Qi, S. Study on the Characteristics of Magneto-Sensitive Electromagnetic Wave-Absorbing Properties of Magnetorheological Elastomers. Smart Mater. Struct. 2016, 25, 085046.
  •  
  • 12. Jung, H. S.; Kwon, S. H.; Choi, H. J.; Jung, J. H.; Kim, Y. G. Magnetic Carbonyl Iron/Natural Rubber Composite Elastomer and Its Magnetorheology. Compos. Struct. 2016, 136, 106-112.
  •  
  • 13. Fan, L.; Wang, G.; Wang, W.; Jeong, U.-C.; Yoon, J.-H.; Yang, I.-H.; Jeong, J.-E.; Kim, J.-S.; Chung, K.-H.; Oh, J.-E. Size Effect of Carbon Black on the Structure and Mechanical Properties of Magnetorheological Elastomers. J. Mater. Sci. 2019, 54, 1326-1340.
  •  
  • 14. Schümann1, M.; Borin, D. Y.; Huang, S.; Auernhammer, G. K.; Müller, R.; Odenbach, S. A Characterisation of the Magnetically Induced Movement of NdFeB-Particles in Magnetorheological Elastomers. Smart Mater. Struct. 2017, 26, 095018.
  •  
  • 15. Li, R.; Zhou, M.; Wang, M.; Yanga, P. Study on a New Self-sensing Magnetorheological Elastomer Bearing. AIP Advances 2018, 8, 065001.
  •  
  • 16. Bica, I.; Anitas, E. M.; Chirigiu, L. Magnetic Field Intensity Effect on Plane Capacitors Based on Hybrid Magnetorheological Elastomers with Graphene Nanoparticles. J. Ind. Eng. Chem. 2017, 56, 407-412.
  •  
  • 17. Wang, Y.; Zhang, X.; Oh, J.; Chung, K. Fabrication and Properties of Magnetorheological Elastomers Based on CR/ENR Self-crosslinking Blends. Smart Mater. Struct. 2015, 24, 9.
  •  
  • 18. Agirre-Olabide, I.; Elejabarrieta, M. J. A New Magneto-Dynamic Compression Technique for Magnetorheological Elastomers at High Frequencies. Polym. Test. 2018, 66, 114-121.
  •  
  • 19. Xu, Z.-D.; Suo, S.; Zhu, J.-T.; Guo, Y.-Q. Performance Tests and Modeling on High Damping Magnetorheological Elastomers Based on Bromobutyl Rubber. J. Intell. Mater. Syst. Struct. 2018, 29, 1025-1037.
  •  
  • 20. Kang, S. S.; Choi, K.; Nam, J.-D.; Choi, H. J. Magnetorheological Elastomers: Fabrication, Characteristics, and Applications. Materials 2020, 13, 4597.
  •  
  • 21. Behrooz, M.; Wang, X.; Gordaninejad, F. Modeling of a New Semi-Active/Passive Magnetorheological Elastomer Isolator. Smart Mater. Struct. 2014, 23, 045013.
  •  
  • 22. Xing, Z.; Yu, M.; Sun, S.; Fu, J.; Li, W. A Hybrid Magneto- rheological Elastomer-Fluid (MRE-F) Isolation Mount: Develop- ment and Experimental Validation. Smart Mater. Struct. 2015,25, 015026.
  •  
  • 23. Gu, X.; Li, Y.; Li, J. Investigations on Response Time of Magnetorheological Elastomer Isolator for Real-Time Control Implementation. Smart Mater. Struct. 2016, 25, 11LT04.
  •  
  • 24. Jeong, U. C.; Yoon, J. H.; Yang, I. H.; Jeong, J. E.; Kim, J. S.; Fan, L.; Wang, G.; Wang, W.; Lu, H.; Yang, F.; Rui, X. Magneto- rheological Elastomer with Stiffness-Variable Characteristics based on Induced Current Applied to Differential Mount of Vehicles. Smart Mater. Struct. 2013, 22, 115007.
  •  
  • 25. Jang, D. I.; Yun, G. E.; Park, J. E.; Kim, Y. K. Designing an Attachable and Power-Efficient All-in-One Module of a Tunable Vibration Absorber based on Magnetorheological Elastomer. Smart Mater. Struct. 2018, 27, 085009.
  •  
  • 26. Li, Z.; Liu, P.; Yan, P. Design and Analysis of a Novel Flexure-Based Dynamically Tunable Nanopositioner. Micromachines 2021, 12, 212.
  •  
  • 27. Mikhailov, V. P.; Bazinenkov, A. M. Active Vibration Isolation Platform on Base of Magnetorheological Elastomers. J. Magn. Magn. Mater. 2017, 431, 266-268.
  •  
  • 28. Guo, Y.-Q.; Zhang, J.; He, D.-Q.; Li, J.-B. Magnetorheological Elastomer Precision Platform Control Using OFFO-PID Algorithm. Advances in Materials Science and Engineering 2020, 3025863.
  •  
  • 29. Park, J. E.; Jeon, J.; Cho, J. H.; Won, S.; Jin, H-J.; Lee, K. H.; Wie, J. J. Magnetomotility of Untethered Helical Soft Robots. RSC Advances 2019, 9, 11272-11280.
  •  
  • 30. Hassanabadi, H. M.; Rodrigue, D. Effect of Particle Size and Shape on the Reinforcing Efficiency of Nanoparticles in Polymer Nanocomposites. Macromel. Mater. Eng. 2014, 299, 1220-1231.
  •  
  • 31. Zakaria, A. Z.; Shelesh-Nezhad, K. Quantifying the Particle Size and Interphase Percolation Effects on the Elastic Performance of Semi-Crystalline Nanocomposite. Comput. Mater. Sci. 2016,117, 502-510.
  •  
  • 32. Li, Y.; Li, J.; Samali, B. On the Magnetic Field and Temperature Monitoring of a Solenoid Coil for a Novel Magnetorheological Elastomer Base Isolator. J. Phys. Conf. Ser. 2013, 412, 2033.
  •  
  • 33. Wan, Y.-X.; Xiong, Y.-P.; Zhang, S.-M. Temperature Effect on Dynamic Properties of Magnetorheological Elastomers. Proceedingsof the 3rd Annual International Conference on Advanced Material Engineering, Shanghai, China, Apr 14-16, 2017; Adiguzel, O., Doumanidis, C. C., Wang, C., Wang, M.-C., Zaidi, B., Eds.; Atlantis Press: Dordrecht, 2017.
  •  
  • 34. Kiarie, W. M.; Gandha, K.; Jiles, D. C. Temperature-Dependent Magnetic Properties of Magnetorheological Elastomers. IEEE Trans. Magn. [Online early access]. DOI: 10.1109/TMAG.2021.3082302. Published Online: May 21, 2021. https://ieeexplore.ieee.org/document/9437174 (accessed May 21, 2021).
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2020 Impact Factor : 0.493
  • Indexed in SCIE

This Article

  • 2021; 45(6): 948-954

    Published online Nov 25, 2021

  • 10.7317/pk.2021.45.6.948
  • Received on Aug 25, 2021
  • Revised on Sep 10, 2021
  • Accepted on Sep 10, 2021

Correspondence to

  • Kyungwho Choi
  • Korea Aerospace University, 76, Hanggongdaehak-ro, Deogyang-gu, Goyang-si, Gyeonggi-do 10540, Korea

  • E-mail: kwchoi@kau.ac.kr