Article
  • Preparation and Characterization of Polyurethane Using Cardanol-Based Bio-Polyol Obtained from One-Pot Synthetic Method
  • Tae-Uk Oh, Won-Ji Lee, and Sang-Ho Cha

  • Department of Chemical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Korea

  • 한 단계 합성 방법을 통한 카다놀 기반 바이오 폴리올 합성 및 이를 이용한 폴리우레탄의 제조 및 특성
  • 오태욱 · 이원지 · 차상호

  • 경기대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Kim, S.; Lee, J.; Han, H. Synthesis of UV Curable, Highly Stretchable, Transparent Poly(urethane-acrylate) Elastomer and Applications Toward Next Generation Technology. Macromol. Res. 2020, 28, 896-902.
  •  
  • 2. Filip, D.; Macocinschi, D.; Tuchilus, C. G.; Zaltariov, M. F.; Varganici, C. D. Synthesis, Characterization of Erythromycin Propionate Core-Based Star Poly(ether urethane)s and Their Antibacterial Properties. Macromol. Res. 2021, 29, 613-624.
  •  
  • 3. Zhang, C.; Wang, H.; Zeng, W.; Zhou, Q. High Biobased Carbon Content Polyurethane Dispersions Synthesized from Fatty Acid-based Isocyanate. Ind. Eng. Chem. Res. 2019, 58, 5195-5201.
  •  
  • 4. Tan, S.; Abraham, T.; Ference, D.; Macosko, C. W. Rigid Polyurethane Foams from a Soybean Oil-based Polyol. Polymer 2011, 52, 2840-2846.
  •  
  • 5. Pawlik, H.; Prociak, A. Influence of Palm Oil-based Polyol on the Properties of Flexible Polyurethane Foams. J. Polym. Environ. 2012, 20, 438-445.
  •  
  • 6. Bresolin, D.; Estrella, A. S.; da Silva, J. R.; Valério, A.; Sayer, C.; de Araújo, P. H.; de Oliveira, D. Synthesis of a Green Polyurethane Foam from a Biopolyol Obtained by Enzymatic Glycerolysis and its Use for Immobilization of Lipase NS-40116. Bioprocess Biosyst. Eng. 2019, 42, 213-222.
  •  
  • 7. Balgude, D.; Sabnis, A. S. CNSL: An Environment Friendly Alternative for the Modern Coating Industry. J. Coat. Technol. Res. 2014, 11, 169-183.
  •  
  • 8. Lomonaco, D.; Santiago, G. M. P.; Ferreira, Y. S.; Arriaga, Â. M. C.; Mazzetto, S. E.; Mele, G.; Vasapollo, G. Study of Technical CNSL and its Main Components as New Green Larvicides. Green Chem. 2009, 11, 31-33.
  •  
  • 9. Choi, Y. S.; Kim, K. H.; Kim, D. G.; Kim, H. J.; Cha, S. H.; Lee, J. C. Synthesis and Characterization of Self-cross-linkable and Bactericidal Methacrylate Polymers Having Renewable Cardanol Moieties for Surface Coating Applications. RSC Adv. 2014, 4, 41195-41203.
  •  
  • 10. Kim, S. H.; Kim, S. B.; Cha, S. H. Preparation and Characterization of Biopolyurethane Film with a Novel Cross-linkable Biopolyol Based on Cardanol. Polymer 2018, 42, 736-746.
  •  
  • 11. Suresh, K. I. Rigid Polyurethane Foams from Cardanol: Synthesis, Structural Characterization, and Evaluation of Polyol and Foam Properties. ACS Sustain. Chem. Eng. 2013, 1, 232-242.
  •  
  • 12. Bo, C.; Hu, L.; Jia, P.; Liang, B.; Zhou, J .; Zhou, Y. Structure and Thermal Properties of Phosphorus-containing Polyol Synthesized from Cardanol. RSC Adv. 2015, 5, 106651-106660.
  •  
  • 13. Suresh, K. I.; Kishanprasad, V. S. Synthesis, Structure, and Properties of Novel Polyols from Cardanol and Developed Polyurethanes. Ind. Eng. Chem. Res. 2005, 44, 4504-4512.
  •  
  • 14. Mishra, V.; Desai, J.; Patel, K. I. (UV/Oxidative) Dual Curing Polyurethane Dispersion from Cardanol Based Polyol: Synthesis and Characterization. Ind. Crops Prod. 2018, 111, 165-178.
  •  
  • 15. Wang, H.; Zhou, Q. Synthesis of Cardanol-based Polyols via Thiol-ene/thiol-epoxy Dual Click-reactions and Thermosetting Polyurethanes Therefrom. ACS Sustain. Chem. Eng. 2018, 6, 12088-12095.
  •  
  • 16. Feng, J.; Zhao, H.; Yue, S.; Liu, S. One-pot Synthesis of Cardanol-derived High-efficiency Antioxidants Based on Intramolecular Synergism. ACS Sustain. Chem. Eng. 2017, 5, 3399-3408.
  •  
  • 17. Chun, B. C.; Cho, T. K.; Chong, M. H.; Chung, Y. C. Structure-property Relationship of Shape Memory Polyurethane Cross-linked by a Polyethyleneglycol Spacer Between Polyurethane Chains. J. Mater. Sci. 2007, 42, 9045.
  •  
  • 18. Cocks, L. V.; Van Rede C. Laboratory Handbook for Oil and Fat Analysts. Laboratory handbook for oil and fat analysts. 1966.
  •  
  • 19. Zhang, Q.; Yang, P.; Deng, Y.; Zhang, C.; Zhu, R.; Gu, Y. Effect of Phenol on the Synthesis of Benzoxazine. RSC Adv. 2015, 5, 103203-103209.
  •  
  • 20. Kathalewar, M.; Sabnis, A. Effect of Molecular Weight of Phenalkamines on the Curing, Mechanical, Thermal and Anticorrosive Properties of Epoxy Based Coatings. Prog. Org. Coat. 2015, 84, 79-88.
  •  
  • 21. Li, S.; Zou, T.; Feng, L.; Liu, X.; Tao, M. Preparation and Properties of Cardanol‐based Polybenzoxazine/SiO2 Hybrids by Sol‐gel Technique. J. Appl. Polym. Sci. 2013, 128, 4164-4171.
  •  
  • 22. Mythili, C.; Retna, A. M.; Gopalakrishnan, S. Synthesis, Mechanical, Thermal and Chemical Properties of Polyurethanes Based on Cardanol. Bull. Mater. Sci. 2004, 27, 235-241.
  •  
  • 23. Lapprand, A.; Boisson, F.; Delolme, F.; Méchin, F.; Pascault, J. P. Reactivity of Isocyanates with Urethanes: Conditions for Allophanate Formation. Polym. Degrad. Stab. 2005, 90, 363-373.
  •  
  • 24. Niyogi, S.; Sarkar, S.; Adhikari B. Catalytic Activity of DBTDL in Polyurethane Formation. Indian J. Chem. Technol. 2002, 9, 330-333.
  •  
  • 25. Alam, M.; Ashraf, S.; Ray, A. R.; Ahmad, S. Development of Anticorrosive Poly(ether-urethane) Amide Coatings from Linseed Oil: A Sustainable Resource. J. Polym. Environ. 2010, 18, 208-215.
  •  
  • 26. Dutta, S.; Karak, N. Effect of the NCO/OH Ratio on the Properties of Mesua Ferrea L. seed Oil‐modified Polyurethane Resins. Polym. Int. 2006, 55, 49-56.
  •  
  • 27. Chattopadhyay, D. K.; Webster, D. C. Thermal Stability and Flame Retardancy of Polyurethanes. Prog. Polym. Sci. 2009, 34, 1068-1133.
  •  
  • 28. Aggarwal, L.; Thapliyal, P.; Karade, S. Anticorrosive Properties of the Epoxy-cardanol Resin Based Paints. Prog. Org. Coat. 2007, 59, 76-80.
  •  
  • 29. Desai, S. D.; Patel, J. V.; Sinha, V. K. Polyurethane Adhesive System from Biomaterial-based Polyol for Bonding Wood. Int. J. Adhes. Adhes. 2003, 23, 393-399.
  •  
  • 30. Ma, T. Y.; Hollander, D.; Krugliak, P.; Katz, K. PEG 400, a Hydrophilic Molecular Probe for Measuring Intestinal Permeability. Gastroenterology 1990, 98, 39-46.
  •  
  • 31. Kim, S. H.; Kim, S. W.; Cha, S. H. Synthesis and Characterization of Biopolyol-based Polyurethane Films Derived from Modified Cardanol through Two-step Reaction. Polymer 2016, 40, 1005-1014.
  •  
  • 32. Zafar, F.; Ashraf, S. M.; Ahmad, S. Self-cured Polymers from Non-drying Oil. Indian J. Chem. Technol. 2008, 2, 285-294.
  •  
  • 33. Elschenbroich, C. Organometallics, Third Completely Revised and Extended Edition. Wiley-VCH, Weinheim J. Am. Chem. Soc. 2006, 128, 12029-12030.
  •  
  • 34. Indumathi, M.; Rajarajeswari, G. Mahua Oil-based Polyurethane/chitosan/nano ZnO Composite Films for Biodegradable Food Packaging Applications. Int. J. Biol. Macromol. 2019, 124, 163-174.
  •  
  • 35. Zhang, C.; Madbouly, S. A.; Kessler, M. R. Biobased Polyurethanes Prepared from Different Vegetable Oils. ACS Appl. Mater. Interfaces 2015, 7, 1226-1233.
  •  
  • 36. Yoo, S. R.; Lee, H. S.; Seo, S. W. Orientation and Phase Separated Structure of Polyurethanes Having Various Chemical Structures. Polymer 1997, 21, 467-479.
  •  
  • 37. Korley, L. T. J.; Pate, B. D.; Thomas, E. L.; Hammond, P. T. Effect of the Degree of Soft and Hard Segment Ordering on the Morphology and Mechanical Behavior of Semicrystalline Segmented Polyurethanes. Polymer 2006, 47, 3073-3082.
  •  
  • 38. Yin, F.; Chen, Q.; Lin, J.; Deng, Y.; Mao, X. Effect of Different Peroxide Initiators on the Reaction Extrusion of Polypropylene-graft-cardanol and its Compatibilization on PP/PC. J. Polym. Res. 2014, 21, 411.
  •  
  • 39. Kil, H. B.; Yoon, S. H.; Ahn, C. W.; Lee, S. W.; Yun, Y. J. Evaluation of Thermal and Mechanical Properties of High Temperature Resin. Proceedings of the 39th KSPE Fall Conference on Aerospace Engineering Topics, Yeosu-si, Korea, November 22-23, 201.
  •  
  • 40. Ginzburg, V. V.; Bicerano, J.; Christenson, C. P.; Schrock, A. K.; Patashinski, A. Z. Theoretical Modeling of the Relationship Between Young's Modulus and Formulation Variables for Segmented Polyurethanes. J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 2123-2135.
  •  
  • 41. Xu, Y.; Burton, S.; Kim, C.; Sismour, E. Phenolic Compounds, Antioxidant, and Antibacterial Properties of Pomace Extracts from Four Virginia‐grown Grape Varieties. Food Sci. Nur. 2016, 4, 125-133.
  •  
  • 42. Choi, Y. S.; Kim, N. K.; Kang, H.; Jang, H. K.; Noh, M.; Kim, J.; Shon, D. J.; Kim, B. S.; Lee, J. C. Antibacterial and Bio- compatible ABA-triblock Copolymers Containing Perfluoro- polyether and Plant-based Cardanol for Versatile Coating Applications. RSC Adv. 2017, 7, 38091-38099.
  •  
  • 43. Choi, Y. S.; Kang, H.; Kim, D. G.; Cha, S. H.; Lee, J. C. Mussel-inspired Dopamine-and Plant-based Cardanol-containing Polymer Coatings for Multifunctional Filtration Membranes. ACS Appl. Mater. Interfaces 2014, 6, 21297-21307.
  •  
  • 44. Nguyen, T. K.; Lam, S. J.; Ho, K. K.; Kumar, N.; Qiao, G. G.; Egan, S.; Boyer, C.; Wong, E. H. Rational Design of Single-chain Polymeric Nanoparticles that Kill Planktonic and Biofilm Bacteria. ACS Infect. Dis. 2017, 3, 237-248.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(1): 13-21

    Published online Jan 25, 2022

  • 10.7317/pk.2022.46.1.13
  • Received on Aug 14, 2021
  • Revised on Nov 8, 2021
  • Accepted on Nov 8, 2021

Correspondence to

  • Sang-Ho Cha
  • Department of Chemical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Korea

  • E-mail: sanghocha@kgu.ac.kr