Article
  • Effect of Carbon Fiber Coating with PEI-Modified MWCNT on the Mechanical and Impact Properties of Carbon Fiber/ABS Composites: Comparisons of Extruded Pellet and LFT Pellet
  • Dongkyu Lee and Donghwan Cho

  • Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea

  • 탄소섬유/ABS 복합재료의 기계적 및 충격 특성에 미치는 PEI로 개질한 MWCNT에 의한 탄소섬유 코팅의 영향: 압출펠렛과 LFT펠렛 비교
  • 이동규 · 조동환

  • 금오공과대학교 고분자공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Yao, S.; Jin, F.-L.; Rhee, K. Y. Hui, D.; Park, S.-J. Recent Advances in Carbon-Fiber-Reinforced Thermoplastic Composites: A Review. Composites Part B 2018, 142, 241-250.
  •  
  • 2. Jeong, N.; Cho, D. Effect of Prepreg Angle-Ply on the Dynamic, Mechanical, Tensile, Flexural, and Impact Properties of Non-Crimp Carbon Fiber Fabric/Epoxy Composites. Polym.Korea 2020, 44, 61-69.
  •  
  • 3. Han, K. H.; Lee, S. H.; Kim, T. S.; Song, K. H.; Koo, C. M.; Kim, W. N. Effects of Fiber Length on the Reflection Loss of Electromagnetic Wave Absorbing Polypropylene/Carbon Fiber Composites Prepared by Injection Molding and by Screw Extrusion Process. Polym. Korea 2021, 45, 185-190.
  •  
  • 4. Jung, S.; Cho, D. Effect of Fiber Feeding Route upon Extrusion Process on the Electromagnetic, Mechanical, and Thermal Properties of Nickel-Coated Carbon Fiber/Polypropylene Composites. Composites Part B 2020, 187, 107861.
  •  
  • 5. Lim, S. J.; Cheon, J.; Kim, M. Effect of Laser Surface Treatments on a Thermoplastic PA 6/Carbon Composite to Enhance the Bonding Strength. Composites Part A 2020, 137, 105989.
  •  
  • 6. Obande, W.; Ó Brádaigh, C. M.; Ray, D. Continuous Fibre-Reinforced Thermoplastic Acrylic-Matrix Composites Prepared by Liquid Resin Infusion - A Review. Composites Part B 2021, 215, 108771.
  •  
  • 7. Hwang, D.; Lee, S. G.; Cho, D. Dual-Sizing Effects of Carbon Fiber on the Thermal, Mechanical, and Impact Properties of Carbon Fiber/ABS Composites. Polymers 2021, 13, 2298.
  •  
  • 8. Lee, H.; Cho, D. Effects of A, B, and S Components on the Fiber Length Distribution, Mechanical, and Impact Properties of Carbon Fiber/ABS Composites Produced by Different Processing Methods. J. Appl. Polym. Sci. 2021, 138, 50674.
  •  
  • 9. Morgan, P. Carbon Fibers and Their Composites; Taylor & Francis: Boca Raton, FL, USA, 2005.
  •  
  • 10. Lee, H. S.; Ohsawa, I.; Takahashi, J. Effect of Plasma Surface Treatment of Recycled Carbon Fiber on Carbon Fiber-Reinforced Plastics (CFRP) Interfacial Properties. Appl. Surf. Sci. 2015, 328, 241-246.
  •  
  • 11. Pathak, A. K.; Borah, M.; Gupta, A.; Yokozeki, T.; Dhakate, S. R. Improved Mechanical Properties of Carbon Fiber/Graphene Oxide-Epoxy Hybrid Composites. Compos. Sci. Technol. 2016, 135, 28-38.
  •  
  • 12. Moore, J. D. Acrylonitrile-Butadiene-Styrene (ABS) - A Review. Composites 1973, 4, 118-130.
  •  
  • 13. Kumar, V.; Singh, R.; Ahuja, I. P. S. Effect of Extrusion Parameters on Primary Recycled ABS: Mechanical, Rheological, Morphological and Thermal Properties. Mater. Res. Express 2020, 7, 015208.
  •  
  • 14. Li, J.; Zhang, Y. F. The Tensile Properties of Short Carbon Fiber Reinforced ABS and ABS/PA6 Composites. J. Reinf. Plast. Compos. 2009, 29, 1727-1733.
  •  
  • 15. Hwang, D.; Cho, D. Fiber Aspect Ratio Effect on Mechanical and Thermal Properties of Carbon Fiber/ABS Composites via Extrusion and Long Fiber Thermoplastic Processes. J. Indus. Eng. Chem. 2019, 80, 335-344.
  •  
  • 16. Lopes, B. J.; d'Almeida, J. R. M. Initial Development and Characterization of Carbon Fiber Reinforced ABS for Future Additive Manufacturing Applications. Mater. Today: Proceed. 2019, 8, 719-730.
  •  
  • 17. Adole, O.; Anguilano, L.; Minton, T.; Campbell, J.; Sean, L.; Valisios, S.; Tarverdi, K. Basalt Fibre-Reinforced High Density Polyethylene Composite Development Using the Twin Screw Extrusion Process. Polym. Test. 2020, 91, 106467.
  •  
  • 18. Sun, Z.; Zhao, Z.-K.; Zhang, Y.-Y. Li, Y. Q.; Fu, Y.-Q.; Sun, B.-G.; Shi, H.-Q.; Huang, P.; Hu, N.; Fu, S.-Y. Mechanical, Tribological and Thermal Properties of Injection Molded Short Carbon Fiber/Expanded Graphite/Polyetherimide Composites. Compos. Sci. Technol. 2021, 201, 108498.
  •  
  • 19. Tseng, H.-C.; Chang, R.-Y.; Hsu, C.-H. Numerical Predictions of Fiber Orientation and Mechanical Properties for Injection-Molded Long-Glass-Fiber Thermoplastic Composites. Compos. Sci. Technol. 2017, 150, 181-186.
  •  
  • 20. Zhang, Q.; Zhang, J.; Wu, L. Impact and Energy Absorption of Long Fiber-Reinforced Thermoplastic Based on Two-Phase Modeling and Experiments. Int. J. Impact Eng. 2018, 122, 374-383.
  •  
  • 21. Holmes, M. Increased Market Role for Long Fiber Thermoplastics. Reinf. Plast. 2019, 63, 262-266.
  •  
  • 22. Henning, F.; Ernst, H.; Brüssel, R. LFTs for Automotive Applications, Reinf. Plast. 2005, 49, 24-33.
  •  
  • 23. Kumar, K. S.; Ghosh, A. K.; Bhatnagar, N. Mechanical Properties of Injection Molded Long Fiber Polypropylene Composites: Part 1: Tensile and Flexural Properties. Polym. Compos. 2007, 28, 259-266.
  •  
  • 24. Goel, A.; Chawla, K. K.; Vaidya, U. K.; Chawla, N.; Koopman, M. Characterization of Fatigue Behavior of Long Fiber Reinforced Thermoplastic (LFT) Composites. Mater. Charact. 2009, 60, 537-544.
  •  
  • 25. Bondy, M.; Pinter, P.; Altenhof, W. Experimental Characterization and Modelling of the Elastic Properties of Direct Compounded Compression Molded Carbon Fibre/Polyamide 6 Long Fibre Thermoplastic. Mater. Des. 2017, 122, 184-196.
  •  
  • 26. Paiva, M. C.; Zhou, B.; Fernando, K. A. S.; Lin, Y.; Kennedy, J. M.; Sun, Y. P. Mechanical and Morphological Characterization of Polymer-Carbon Nanocomposites from Functionalized Carbon Nanotubes. Carbon 2004, 42, 2849-2854.
  •  
  • 27. Liu, P. Modifications of Carbon Nanotubes with Polymers. Eur. Polym. J. 2005, 41, 2693-2706.
  •  
  • 28. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D. Chemical Oxidation of Multiwalled Carbon Nanotubes. Carbon 2008, 46, 833-840.
  •  
  • 29. Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. The Reinforcement Role of Different Amino-Functionalized Multi-Walled Carbon Nanotubes in Epoxy Nanocomposites. Compos. Sci. Technol. 2007, 67, 3041-3050.
  •  
  • 30. Cheon, J.; Yoon, B. I.; Cho, D. The Synergetic Effect of Phenolic Anchoring and Multi-Walled Carbon Nanotubes on the Yarn Pull-Out Force of Para-Aramid Fabrics at High Speed. Carbon Lett. 2018, 26, 107-111.
  •  
  • 31. Cheon, J.; Cho, D. Enhancement of Yarn Pull-Out Force of Para-Aramid Fabric at High Speed by Dispersion and Phenolic Anchoring of MWCNT on the Fiber Surfaces in the Presence of Surfactant and Ultrasonic Process. Macromol. Res. 2020, 28, 881-884.
  •  
  • 32. Kamae, T.; Drzal, L. T. Carbon Fiber/Epoxy Composite Property Enhancement through Incorporation of Carbon Nanotubes at the Fiber-Matrix Interphase-Part 1: The Development of Carbon Nanotube Coated Carbon Fibers and the Evaluation of Their Adhesion. Composites Part A 2012, 43, 1569-1577.
  •  
  • 33. Lee, D.; Kim, Y.; Kwon, O. H.; Park, W. H.; Cho, D. Carbon Fiber Coating with MWCNT in the Presence of Polyethyleneimine of Different Molecular Weights and the Effect on the Interfacial Shear Strength of Thermoplastic and Thermosetting Carbon Fiber Composites. Carbon Lett. 2021, 31, 407-417.
  •  
  • 34. Yoon, C. H.; Lee, H. S. Carbon Nanocomposite. Polym. Sci. Technol. 2007, 18, 4-7.
  •  
  • 35. Avilés, F.; Cauich-Rodríguez, J. V.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of Mild Acid Oxidation Treatments for MWCNT Functionalization. Carbon 2009, 47, 2970-2975.
  •  
  • 36. Tehrani, M.; Boroujeni, A. Y.; Hartman, T. B.; Haugh, T. P.; Case, S. W.; Al-Haik, M. S. Mechanical Characterization and Impact Damage Assessment of a Woven Carbon Fiber Reinforced Carbon Nanotube-Epoxy Composite. Compos. Sci. Technol. 2013, 75, 42-48.
  •  
  • 37. Schemme, M. LFT - Development Status and Perspectives. Reinf. Plast. 2008, 52, 32-34.
  •  
  • 38. Bondy, M.; Altenhof, W. Low Velocity Impact Testing of Direct/Inline Compounded Carbon Fibre/Polyamide-6 Long Fibre Thermoplastic. Int. J. Impact Eng. 2018, 111, 66-76.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(1): 36-46

    Published online Jan 25, 2022

  • 10.7317/pk.2022.46.1.36
  • Received on Aug 27, 2021
  • Revised on Oct 8, 2021
  • Accepted on Oct 18, 2021

Correspondence to

  • Donghwan Cho
  • Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea

  • E-mail: dcho@kumoh.ac.kr