Article
  • Preparation of Biodegradable Poly(lactic acid)-Cellulose Composite Foam
  • Yejin Park and Jonghwi Lee

  • Department of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • 생분해성 Poly(lactic acid)-셀룰로오스 다공성 복합체의 제조
  • 박예진 · 이종휘

  • 중앙대학교 공과대학 화학신소재공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Kalka, S.; Huber, T.; Steinberg, J.; Baronian, K.; Müssig, J.; Staiger, M. P. Biodegradability of All-Cellulose Composite Laminates. Composites Part A 2014, 59, 37-44.
  •  
  • 2. Lindman, B.; Karlström, G.; Stigsson, L. On the Mechanism of Dissolution of Cellulose. J. Mol. Liq. 2010, 156, 76-81.
  •  
  • 3. Medronho, B.; Lindman, B. Brief Overview on Cellulose Dissolution/Regeneration Interactions and Mechanisms. Adv. Colloid Interface Sci. 2015, 222, 502-508.
  •  
  • 4. Kamal, M. R.; Khoshkava, V. Effect of Cellulose Nanocrystals (CNC) on Rheological and Mechanical Properties and Crystallization Behavior of PLA/CNC Nanocomposites. Carbohydr. Polym. 2015, 123, 105-114.
  •  
  • 5. Khoo, R. Z.; Ismail, H.; Chow, W. S. Thermal and Morphological Properties of Poly(Lactic Acid)/Nanocellulose Nanocomposites. Procedia. Chem. 2016, 19, 788-794.
  •  
  • 6. Gazzotti, S.; Rampazzo, R.; Hakkarainen, M.; Bussini, D.; Ortenzi, M. A.; Farina, H.; Lesma, G.; Silvani, A. Cellulose Nanofibrils as Reinforcing Agents for PLA-Based Nanocomposites: An in Situ Approach. Compos. Sci. Technol. 2019, 171, 94-102.
  •  
  • 7. Cervin, N. T.; Johansson, E.; Larsson, P. A.; Wagberg, L. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying. ACS Appl. Mater. Interfaces 2016, 8, 11682-11689.
  •  
  • 8. Gupta, P.; Singh, B.; Agrawal, A. K.; Maji, P. K. Low Density and High Strength Nanofibrillated Cellulose Aerogel for Thermal Insulation Application. Mater. Des. 2018, 158, 224-236.
  •  
  • 9. Song, M.; Jiang, J.; Qin, H.; Ren, X.; Jiang, F. Flexible and Super Thermal Insulating Cellulose Nanofibril/Emulsion Composite Aerogel with Quasi-Closed Pores. ACS Appl. Mater. Interfaces 2020, 12, 45363-45372.
  •  
  • 10. Li, S.; Zhou, C.; He, Y.; Liu, H.; Zhou, L.; Yu, C.; Wei, C.; Wang, C. Novel Nanocellulose/Polymer Composite Aerogel as Solid‐State Fluorescence Probe by Pickering Emulsion Route. Macromol. Mater. Eng. 2020, 305, 2000467.
  •  
  • 11. Do, N. H. N.; Tran, V. T.; Tran, Q. B. M.; Le, K. A.; Thai, Q. B.; Nguyen, P. T. T.; Duong, H. M.; Le, P. K. Recycling of Pineapple Leaf and Cotton Waste Fibers into Heat-insulating and Flexible Cellulose Aerogel Composites. J. Polym. Environ. 2020, 29, 1112-1121.
  •  
  • 12. Nguyen, S. T.; Feng, J.; Le, N. T.; Le, A. T. T.; Hoang, N.; Tan, V. B. C.; Duong, H. M. Cellulose Aerogel from Paper Waste for Crude Oil Spill Cleaning. Ind. Eng. Chem. Res. 2013, 52, 18386-18391.
  •  
  • 13. Salimi, S.; Sotudeh-Gharebagh, R.; Zarghami, R.; Chan, S. Y.; Yuen, K. H. Production of Nanocellulose and Its Applications in Drug Delivery: A Critical Review. ACS Sustain. Chem. Eng. 2019, 7, 15800-15827.
  •  
  • 14. Roman, M. Toxicity of Cellulose Nanocrystals: A Review. Ind. Biotechnol. 2015, 11, 25-33.
  •  
  • 15. Yanamala, N.; Farcas, M. T.; Hatfield, M. K.; Kisin, E. R.; Kagan, V. E.; Geraci, C. L.; Shvedova, A. A. In Vivo Evaluation of the Pulmonary Toxicity of Cellulose Nanocrystals: A Renewable and Sustainable Nanomaterial of the Future. ACS Sustain. Chem. Eng. 2014, 2, 1691-1698.
  •  
  • 16. Martoïa, F.; Cochereau, T.; Dumont, P. J. J.; Orgéas, L.; Terrien, M.; Belgacem, M. N. Cellulose Nanofibril Foams: Links between Ice-Templating Conditions, Microstructures and Mechanical Properties. Mater. Des. 2016, 104, 376-391.
  •  
  • 17. Benito-González, I.; López-Rubio, A.; Gómez-Mascaraque, L. G.; Martínez-Sanz, M. PLA Coating Improves the Performance of Renewable Adsorbent Pads Based on Cellulosic Aerogels from Aquatic Waste Biomass. Chem. Eng. J. 2020, 390, 124607.
  •  
  • 18. Zeng, J.-B.; Li, K.-A.; Du, A.-K. Compatibilization Strategies in Poly(Lactic Acid)-Based Blends. RSC Adv. 2015, 5, 32546-32565.
  •  
  • 19. Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N. Synthesis of Poly(Lactic Acid): A Review. J. Macromol. Sci., Part C: Polym. Rev. 2005, 45, 325-349.
  •  
  • 20. Schliecker, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Characterization of a Homologous Series of D,L-Lactic Acid Oligomers; A Mechanistic Study on the Degradation Kinetics in Vitro. Biomaterials 2003, 24, 3835-3844.
  •  
  • 21. Elsawy, M. A.; Kim, K.-H.; Park, J.-W.; Deep, A. Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites. Renew. Sustain. Energy Rev. 2017, 79, 1346-1352.
  •  
  • 22. Ho, K.-L. G.; III, A. L. P.; Hinz, P. N. Effects of Temperature and Relative Humidity on Polylactic Acid Plastic Degradation. J. Environ. Polym. Degrad. 1999, 7, 83-92.
  •  
  • 23. Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J. H.; Abu-Omar, M.; Scott, S. L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494-3511.
  •  
  • 24. Tosin, M.; Weber, M.; Siotto, M.; Lott, C.; Degli Innocenti, F. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions. Front. Microbiol. 2012, 3, 225.
  •  
  • 25. Lambert, S.; Wagner, M. Characterisation of Nanoplastics During the Degradation of Polystyrene. Chemosphere 2016, 145, 265-8.
  •  
  • 26. Steensgaard, I. M.; Syberg, K.; Rist, S.; Hartmann, N. B.; Boldrin, A.; Hansen, S. F. From Macro- to Microplastics - Analysis of EU Regulation Along the Life Cycle of Plastic Bags. Environ. Pollut. 2017, 224, 289-299.
  •  
  • 27. Groot, W. J.; Borén, T. Life Cycle Assessment of the Manufacture of Lactide and PLA Biopolymers from Sugarcane in Thailand. Int. J. Life Cycle Assess. 2010, 15, 970-984.
  •  
  • 28. Cai, J.; Kimura, S.; Wada, M.; Kuga, S.; Zhang, L. Cellulose Aerogels from Aqueous Alkali Hydroxide-Urea Solution. ChemSusChem 2008, 1, 149-154.
  •  
  • 29. Huan, S.; Ajdary, R.; Bai, L.; Klar, V.; Rojas, O. J. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Biomacromolecules 2019, 20, 635-644.
  •  
  • 30. El-Sakhawy, M.; Salama, A.; Sarhan, H.-A. Preparation and Infrared Study of Cellulose Based Amphiphilic Materials. Cellul. Chem. Technol. 2018, 52, 193-200.
  •  
  • 31. Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Differences in the CH3…OC Interactions Among Poly(L-lactide), Poly(L-lactide)/Poly(D-lactide) Stereocomplex, and Poly(3-hydroxy- butyrate) Studied by Infrared Spectroscopy. J. Mol. Struct. 2005, 249-257.
  •  
  • 32. Paragkumar, N. T.; Edith, D.; Six, J.-L. Surface Characteristics of PLA and PLGA Films. Appl. Surf. Sci. 2006, 253, 2758-2764.
  •  
  • 33. Uetani, K.; Hatori, K. Thermal Conductivity Analysis and Applications of Nanocellulose Materials. Sci. Technol. Adv. Mater. 2017, 18, 877-892.
  •  
  • 34. Uetani, K.; Okada, T.; Oyama, H. T. Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets. Biomacromolecules 2015, 16, 2220-2227.
  •  
  • 35. Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41-85.
  •  
  • 36. Chae, H. G.; Kumar, S. Making Strong Fibers. Science 2008, 319, 908-909.
  •  
  • 37. Lebedev, S. M.; Gefle, O. S.; Amitov, E. T.; Berchuk, D. Y.; Zhuravlev, D. V. Poly(Lactic Acid)-Based Polymer Composites with High Electric and Thermal Conductivity and Their Characterization. Polym. Test. 2017, 58, 241-248.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(1): 101-106

    Published online Jan 25, 2022

  • 10.7317/pk.2022.46.1.101
  • Received on Sep 28, 2021
  • Revised on Nov 2, 2021
  • Accepted on Nov 8, 2021

Correspondence to

  • Jonghwi Lee
  • Department of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • E-mail: jong@cau.ac.kr