Article
  • Solvent Size-Dependent Structure of Diblock Copolymer Micelles in n-alkanes
  • Sangho Lee and Soo-Hyung Choi

  • Department of Chemical Engineering, Hongik University, Seoul 04066, Korea

  • 알칸 용매 내에서 용매 크기에 따른 블록공중합체 미셀 구조 연구
  • 이상호 ·최수형

  • 홍익대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Choi, S.; Bates, F.; Lodge, T. Molecular Exchange in Ordered Diblock Copolymer Micelles. Macromolecules 2011, 44, 3594-3604.
  •  
  • 2. Van Der Kooij, H.; Spruijt, E.; Voets, I.; Fokkink, R.; Cohen Stuart, M.; Van Der Gucht, J. on the Stability and Morphology of Complex Coacervate Core Micelles: From Spherical to Wormlike Micelles. Langmuir 2012, 28, 14180-14191.
  •  
  • 3. Spruijt, E.; Leermakers, F.; Fokkink, R.; Schweins, R.; Van Well, A.; Cohen Stuart, M.; Van Der Gucht, J. Structure and Dynamics of Polyelectrolyte Complex Coacervates Studied by Scattering of Neutrons, X-rays, and Light. Macromolecules 2013, 46, 4596-4605.
  •  
  • 4. Gohy, J.; Varshney, S.; Antoun, S.; Jérôme, R. Water-Soluble Complexes Formed by Sodium Poly(4-styrenesulfonate) and a Poly(2-vinylpyridinium)-block-poly(ethyleneoxide) Copolymer. Macromolecules 2000, 33, 9298-9305.
  •  
  • 5. Riess, G. Micellization of Block Copolymers. Prog. Polym. Sci. 2003, 28, 1107-1170.
  •  
  • 6. Babi, J.; Zhu, L.; Lin, A.; Uva, A.; El‐Haddad, H.; Peloewetse, A.; Tran, H. Self‐assembled Free‐floating Nanomaterials from Sequence‐defined Polymers. J. Polym. Sci. 2021, ASAP.
  •  
  • 7. Voets, I.; de Keizer, A.; Cohen Stuart, M. Complex Coacervate Core Micelles. Adv. Colloid Interface Sci. 2009, 147-148.
  •  
  • 8. Gohy, J. F. Block Copolymer Micelles. Adv. Polym. Sci. 2005, 190, 65-136.
  •  
  • 9. Hiemenz, P.; Lodge, T. Polymer Chemistry, 2nd Edition; CRC Press, Taylor & Francis Group: Boca Raton, 2007.
  •  
  • 10. Hamley, I.; Block Copolymers in Solution: Fundamentals and Applications; John Wiley and Sons: Chichester, 2005; pp 7-104.
  •  
  • 11. Bates, F. Polymer-Polymer Phase Behavior. Science 1991, 251, 898-905.
  •  
  • 12. Halperin, A.; Tirrell, M.; Lodge, T. Tethered Chains in Polymer Microstructures. Adv. Polym. Sci. 1992, 100, 31-71.
  •  
  • 13. Milner, S. Polymer Brushes. Science 1991, 251, 905-914.
  •  
  • 14. Leibler, L.; Orland, H.; Wheeler, J. Theory of Critical Micelle Concentration for Solutions of Block Copolymers. J. Chem. Phys. 1983, 79, 3550-3557.
  •  
  • 15. Nagarajan, R. Thermodynamics of Nonionic Polymer-micelle Association.Colloids Surf. 1985, 13, l-17.
  •  
  • 16. Lund, R.; Willner, L.; Stellbrink, J.; Radulescu, A.; Richter, D. Role of Interfacial Tension for the Structure of PEP-PEO Polymeric Micelles. A Combined SANS and Pendant Drop Tensiometry Investigation. Macromolecules2004, 37, 9984-9993.
  •  
  • 17. Ma, Y.; Lodge, T. Poly(methyl methacrylate)-block-poly(n-butyl methacrylate) Diblock Copolymer Micelles in an Ionic Liquid: Scaling of Core and Corona Size with Core Block Length. Macromolecules 2016, 49, 3639-3646.
  •  
  • 18. Lund, R.; Willner, L.; Richter, D. Kinetics of Block Copolymer Micelles Studied by Small-Angle Scattering Methods. Adv. Polym. Sci. 2013, 259, 51-158.
  •  
  • 19. Kelley, E.; Smart, T.; Jackson, A.; Sullivan, M.; Epps, T. Structural Changes in Block Copolymer Micelles Induced by Cosolvent Mixtures. Soft Matter 2011, 7, 7094-7102.
  •  
  • 20. Cooksey, T.; Singh, A.; Le, K.; Wang, S.; Kelley, E.; He, L.; Robertson, M. Tuning Biocompatible Block Copolymer Micelles by Varying Solvent Composition: Core/Corona Structure and Solvent Uptake. Macromolecules 2017, 50, 4322-4334.
  •  
  • 21. Wang, E.; Zhu, J.; Zhao, D.; Xie, S.; Bates, F.; Lodge, T. Effect of Solvent Selectivity on Chain Exchange Kinetics in Block Copolymer Micelles. Macromolecules. Macromolecules 2020, 53, 417-426.
  •  
  • 22. Choi, S.; Lee, W.; Lodge, T.; Bates, F. Structure of Poly(styrene-b-ethylene-alt-propylene) Diblock Copolymer Micelles in Binary Solvent Mixtures. J. Polym. Sci. B: Polym. Phys. 2016, 54, 22-31.
  •  
  • 23. Quintana, J.; Villacampa, M.; Andrio, A.; Munoz, M.; Katime, I. Micellization of a Polystyrene-block-poly(Ethylene/propylene) Copolymer in n-alkanes. 2. Structural Study. Macromolecules 1992, 25, 3129-3136.
  •  
  • 24. Lund, R.; Willner, L.; Lindner, P.; Richter, D. Structural Properties of Weakly Segregated PS-PB Block Copolymer Micelles in n-Alkanes: Solvent Entropy Effects. Macromolecules 2009, 42, 2686-2695.
  •  
  • 25. Imre, A.; Alexander, W.; Hook, V. The Effect of Branching of Alkanes on the Liquid-liquid Equilibrium of Oligostyrene/alkane Systems. Fluid Ph. Equilibria 2001, 187-188, 363-372.
  •  
  • 26. Choi, S.; Bates, F.; Lodge, T. Structure of Poly(styrene-b-ethylene-alt-propylene) Diblock Copolymer Micelles in Squalane. J. Phys. Chem. B 2009, 113, 13840-13848.
  •  
  • 27. Fetters, L.; Lohse, D.; Richter, D.; Witten, T.; Zirkelt, A. Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties. Macromolecules 1994, 27, 4639-4647.
  •  
  • 28. Itakura, M.; Shimada, K.; Matsuyama, S.; Saito, T.; Kinugasa, S. A convenient method to determine the Rayleigh Ratio with Uniform Polystyrene Oligomers. J. Appl. Polym. Sci. 2006, 99, 1953-1959.
  •  
  • 29. Pedersen, J. S.; Gerstenberg, M. C. Scattering Form-Factor of Block-Copolymer Micelles. Macromolecules 1996, 29, 1363-1365.
  •  
  • 30. Bang, J.; Viswanathan, K.; Lodge, T. P.; Park, M. J.; Char, K. H. Temperature-dependent Micellar Structures in Poly(styrene-b-isoprene) Diblock Copolymer Solutions Near the Critical Micelle Temperature. J. Chem. Phys. 2004, 121, 11489-11500.
  •  
  • 31. Belmares, M.; Blanco, M.; Goddard, W.; Ross, R.; Caldwell, G.; Chou, S.; Pham, J.; Olofson, P.; Thomas, C. Hildebrand and Hansen Solubility Parameters from Molecular Dynamics with Applications to Electronic Nose Polymer Sensors. J. Comput. Chem.2004, 25, 1814-1826.
  •  
  • 32. Díaz, E.; Cazurro, A.; Ordóñez, S.; Vega, A.; Coca, J. Determination of Solubility Parameters and Thermodynamic Properties in Hydrocarbon-solvent Systems by Gas Chromatography. Braz. J. Chem. Eng. 2007, 24, 293-306.
  •  
  • 33. Zhu, J.; Balieu, R.; Wang, H. The Use of Solubility Parameters and Free Energy Theory for Phase Behaviour of Polymer-modified Bitumen: A Review. Road Mater. Pavement Des. 2019, 1-22.
  •  
  • 34. Cheng, G.; Hammouda B.; Perahia, D. Effects of Intermicellar Interactions on the Dissociation of Block Copolymer Micelles: SANS and NMR Studies. Macromol. Chem. Phys. 2014, 215, 341-350.
  •  
  • 35. Kambour, R.; Gruner, C.; Romagosa, E. Solvent Crazing of “dry” Polystyrene and “dry” Crazing of Plasticized Polystyrene. J. Polymer. Sci. 1973, 11, 1879-1890.
  •  
  • 36. Evans, C.; Henderson, K.; Saathoff, J.; Shull, K.;Torkelson, J. Simultaneous Determination of Critical Micelle Temperature and Micelle Core Glass Transition Temperature of Block Copolymer-Solvent Systems via Pyrene-Label Fluorescence. Macromolecules 2013, 46, 4131-4140.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(1): 135-143

    Published online Jan 25, 2022

  • 10.7317/pk.2022.46.1.135
  • Received on Oct 26, 2021
  • Revised on Nov 8, 2021
  • Accepted on Nov 8, 2021

Correspondence to

  • Soo-Hyung Choi
  • Department of Chemical Engineering, Hongik University, Seoul 04066, Korea

  • E-mail: shchoi@hongik.ac.kr