Article
  • Highly Porous Biocomposite Scaffolds Fabricated by Chitosan/Alginate/Diatom for Tissue Engineering
  • Yusuf Özcan , Dicle Erden Gönenmiş, Esranur Kızılhan, and Cem Gök*

  • Department of Biomedical Engineering, Pamukkale University, 20070, Denizli, Turkey
    *Department of Metallurgical and Material Engineering, Pamukkale University, 20070, Denizli, Turkey

  • Chitosan/Alginate/Diatom을 이용한 조직공학용 다공성 세포지지체 연구
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Di silvio, L. 15-Bone tissue Engineering and Biomineralization. In Tissue Engineering Using Ceramics and Polymers; Boccaccini, A. R., Gough, J. E., Eds.; Woodhead Publishing: Cambridge, 2007; pp 319-331.
  •  
  • 2. Peter, S. J.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G. Polymer Concepts in Tissue Engineering. J. Biomed. Mater. Res. 1998, 43, 422-427.
  •  
  • 3. Freed, L. E.; Vunjak-Novakovic, G.; Biron, R. J.; Eagles, D. B.; Lesnoy, D. C.; Barlow, S. K.; Langer, R. Biodegradable Polymer Scaffolds for Tissue Engineering. Nat. Biotechnol. 1994, 12, 689-693.
  •  
  • 4. Kim, B. S.; Mooney, D. J. Development of Biocompatible Synthetic Extracellular Matrices for Tissue Engineering. Trends Biotechnol. 1998, 16, 224-230.
  •  
  • 5. Yu, Y.; Hua, S.; Yang, M.; Fu, Z.; Teng, S.; Niu, K.; Zhao, Q.; Yi, C. Fabrication and Characterization of Electrospinning/3D Printing Bone Tissue Engineering Scaffold. RSC Adv. 2016, 6, 110557-110565.
  •  
  • 6. Nie, W.; Peng, C.; Zhou, X.; Chen, L.; Wang, W.; Zhang, Y.; Ma, P. X.; He, C. Three-dimensional Porous Scaffold by Self-assembly of Reduced Graphene Oxide and Nano-hydroxyapatite Composites for Bone Tissue Engineering. Carbon 2017, 116, 325-337.
  •  
  • 7. Costantini, M.; Barbetta, A. 6-Gas foaming technologies for 3D scaffold engineering. In Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications; Deng, Y., Kuiper, J.B.T., Eds.; Woodhead Publishing: Cambridge, 2018; pp 127-149.
  •  
  • 8. Farhangdoust, S.; Zamanian, A.; Yasaei, M.; Khorami, M. The Effect of Processing Parameters and Solid Concentration on the Mechanical and Microstructural Properties of Freeze-casted Macroporous Hydroxyapatite Scaffolds. Mater. Sci. Eng. C 2013, 33, 453-460.
  •  
  • 9. Özcan, Y.; İde, S.; Jeng, U.; Bütün, V.; Lai, Y. H. C.; Su, H. Micellization Behavior of Tertiary Amine-methacrylate-based Block Copolymers Characterized by Small-angle X-ray Scattering and Dynamic Light Scattering. Mater. Chem. Phys. 2013, 138, 559-564.
  •  
  • 10. Özcan, Y.; Orujalipoor, I.; Huang, Y. C.; Bütün, V.; Jeng, U. S. Self-assembled and Nanostructured Copolymer Aggregations of the Tertiary Amine Methacrylate Based Triblock Copolymers. Anal. Lett. 2015, 48, 2693-2707.
  •  
  • 11. Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms Behind Them. Gels 2017, 3, 6.
  •  
  • 12. Kopeček, J. Hydrogel Biomaterials: a Smart Future. Biomaterials 2007, 28, 5185-5192.
  •  
  • 13. Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in Pharmaceutical Formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27-46.
  •  
  • 14. Kamoun, E. A.; Omer, A. M.; Abu-Serie, M. M.; Khattab, S. N.; Ahmed, H. M.; Elbardan, A. A. Photopolymerized PVA-g-GMA Hydrogels for Biomedical Applications: Factors Affecting Hydrogel Formation and Bioevaluation Tests. Arab. J. Sci. Eng. 2018, 43, 3565-3575.
  •  
  • 15. Rowley, J. A.; Madlambayan, G.; Mooney, D. J. Alginate Hydrogels as Synthetic Extracellular Matrix Materials. Biomaterials 1999, 20, 45-53.
  •  
  • 16. Tonnesen, H. H.; Karlsen, J. Alginate in Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 621-630.
  •  
  • 17. Joki, T.; Machluf, M.; Atala, A.; Zhu, J.; Seyfried, N. T.; Dunn; I. F.; Abe, T.; Carroll, R. S.; Black, M. P. Continuous Release of Endostatin from Microencapsulated Engineered Cells for Tumor Therapy. Nat. Biotechnol. 2001, 19, 35-39.
  •  
  • 18. Yang, J. S.; Xie, Y. J.; He, W. Research Progress on Chemical Modification of Alginate: A Review. Carbohydr. Polym. 2011,84, 33-39.
  •  
  • 19. Fan, L.; Zhang, J.; Wang, A. In situ Generation of Sodium Alginate/Hydroxyapatite/Halloysite Nanotubes Nanocomposite Hydrogel Beads as Drug-controlled Release Matrices. J. Mater. Chem. B 2013, 1, 6261-6270.
  •  
  • 20. Kuo, C. K.; Ma, P. X. Ionically Crosslinked Alginate Hydrogels as Scaffolds for Tissue Engineering: Part 1. Structure, Gelation Rate and Mechanical Properties. Biomaterials 2001, 22, 511-521.
  •  
  • 21. Srinivasan, S.; Jayasree, R.; Chennazhi, K. P.; Nair, S. V.; Jayakumar, R. Biocompatible Alginate/Nano Bioactive Glass Ceramic Composite Scaffolds for Periodontal Tissue Regeneration. Carbohydr. Polym. 2012, 87, 274-283.
  •  
  • 22. Tonnesen, H. H.; Karlsen, J. Alginate in Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 621-630.
  •  
  • 23. Augst, A. D.; Kong, H. J.; Mooney, D. J. Alginate Hydrogels as Biomaterials. Macromol. Biosci. 2006, 6, 623-633.
  •  
  • 24. Xu, J.; Ma, L.; Liu, Y.; Xu, F.; Nie, J.; Ma, G. Design and Characterization of Antitumor Drug Paclitaxel-loaded Chitosan Nanoparticles by W/O Emulsions. Int. J. Biol. Macromol. 2012, 50, 438-443.
  •  
  • 25. Niaz, T.; Nasir, H.; Shabbir, S.; Rehman, A.; Imran, M. Polyionic Hybrid Nano-engineered Systems Comprising Alginate and Chitosan for Antihypertensive Therapeutics. Int. J. Biol. Macromol. 2016, 91, 180-187.
  •  
  • 26. Ivanova, E. P.; Bazaka, K.; Crawford, R. 2-Natural Polymer Biomaterials: Advanced Applications. In New Functional Biomaterials for Medicine and Healthcare; Woodhead Publishing: New Delhi, 2014; pp 32-70.
  •  
  • 27. Kumbhar, S. G.; Pawar, S. H. Synthesis and Characterization of Chitosan-alginate Scaffolds for Seeding Human Umbilical Cord Derived Mesenchymal Stem Cells. Biomed. Mater. Eng. 2016, 27, 561-575.
  •  
  • 28. Şan, O.; Gören, R.; Özgür, C. Purification of Diatomite Powder by Acid Leaching for Use in Fabrication of Porous Ceramics. Int. J. Miner. Process. 2009, 93, 6-10.
  •  
  • 29. Wang, Y.; Cai, J.; Jiang, Y.; Jiang, X.; Zhang, D. Preparation of Biosilica Structures from Frustules of Diatoms and Their Applications: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2013, 97, 453-460.
  •  
  • 30. Gordon, R.; Losic, D.; Tiffany, M. A.; Nagy, S. S.; Sterrenburg, F. A. The Glass Menagerie: Diatoms for Novel Applications in Nanotechnology. Trends Biotechnol. 2009, 27, 116-127.
  •  
  • 31. Takanoglu, D.; Yılmaz, K.; Ozcan, Y.; Karabulut, O. Structural, Electrical and Optical Properties of Thermally Evaporated Cdse and in-doped CdSe Thin Films. Chalcogenide Lett. 2015, 12, 35-42.
  •  
  • 32. Shahbazarab, Z.; Teimouri, A.; Chermahini, A. N.; Azadi, M. Fabrication and Characterization of Nanobiocomposite Scaffold of Zein/Chitosan/Nanohydroxyapatite Prepared by Freeze-drying Method for Bone Tissue Engineering. Int. J. Biol. Macromol. 2018, 108, 1017-1027.
  •  
  • 33. Zhang, K.; Cheng, L.; Imazato, S.; Antonucci, J. M.; Lin, N. J.; Lin-Gibson, S.; Bai, Y.; Xu, H. H. K. Effects of Dual Antibacterial Agents MDPB and Nano-silver in Primer on Microcosm Biofilm, Cytotoxicity and Dentine Bond Properties. J. Dent. 2013, 41, 464-474.
  •  
  • 34. Mahammod, B. P.; Barua, E.; Deb, P.; Deoghare, A. B.; Pandey, K. M. Investigation of Physico-mechanical Behavior, Permeability and WallShear Stress of Porous HA/PMMA Composite Bone Scaffold. Arab. J. Sci. Eng. 2020, 45, 5505-5515.
  •  
  • 35. Li, Z.; Ramay, H. R.; Hauch, K. D.; Xiao, D.; Zhang, M. Chitosan-alginate Hybrid Scaffolds for Bone Tissue Engineering. Biomaterials 2005, 26, 3919-3928.
  •  
  • 36. Venkatesan, J.; Bhatnagar, I.; Kim, S. Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering. Mar. Drugs 2014, 12, 300-316.
  •  
  • 37. Daemi, H.; Barikani, M. Synthesis and Characterization of Calcium Alginate Nanoparticles, Sodium Homopolymannuronate Salt and Its Calcium Nanoparticles. Sci. Iran. 2012, 19, 2023-2028.
  •  
  • 38. Yasmeen, S.; Kabiraz, M. K.; Saha, B.; Qadir, M.-D.; Gafur, M.; Masum, S. Chromium (VI) Ions Removal from Tannery Effluent using Chitosan-Microcrystalline Cellulose Composite as Adsorbent. Int. Res. J. Pure. Appl. Chem. 2016, 10, 1-14.
  •  
  • 39. Gendron-Badou, A.; Coradin, T.; Maquet, J.; Fröhlich, F.; Livage, J. Spectroscopic Characterization of Biogenic Silica. J. Non-Cryst. Solids 2003, 316, 331-337.
  •  
  • 40. Gélabert, A.; Pokrovsky, O. S.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.; Mielczarski, J.; Mielczarski, E.; Mesmer-Dudons, N.; Spalla, O. Study of Diatoms/Aqueous Solution Interface. I. Acid-Base Equilibria and Spectroscopic Observation of Freshwater and Marine Species. Geochim. Cosmochim. Acta 2004, 68, 4039-4058.
  •  
  • 41. Sowjanya, J. A.; Singh, J.; Mohita, T.; Sarvanan, S.; Moorthi, A.; Srinivasan, N.; Selvamurugan, N. Biocomposite Scaffolds Containing Chitosan/Alginate/Nano-silica for Bone Tissue Engineering. Colloids Surf. B 2013, 109, 294-300.
  •  
  • 42. Manzari‑Tavakoli, A.; Tarasi, R.; Sedghi, R.; Moghimi, A.; Niknejad, H. Fabrication of Nanochitosan Incorporated Polypyrrole/Alginate Conducting Scaffold for Neural Tissue Engineering. Sci. Rep. 2020, 10, 22012-22021.
  •  
  • 43. Zhang, L.; Guo, J.; Zhou, J.; Yang, G.; Du, Y. Blend Membranes from Carboxymethylated Chitosan/Alginate in Aqueous Solution. J. Appl. Polym. Sci. 2000, 77, 610-616.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(4): 455-462

    Published online Jul 25, 2022

  • 10.7317/pk.2022.46.4.455
  • Received on Jan 7, 2021
  • Revised on Mar 17, 2022
  • Accepted on Apr 25, 2022

Correspondence to

  • Yusuf Özcan
  • Department of Biomedical Engineering, Pamukkale University, 20070, Denizli, Turkey

  • E-mail: ozcan@pau.edu.tr