Article
  • Effect of 4-Hydroxybutyrate Content on Physical Properties of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
  • Minki Jo, Yunjae Jang*, Eunhye Lee*, Sooan Shin*, and Ho-Jong Kang

  • Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Korea
    *CJ Cheiljedang Corp. 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

  • Hydroxybutyrate 함량이 Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) 물성에 미치는 영향
  • 조민기 · 장윤재* · 이은혜* · 신수안* · 강호종

  • 단국대학교 고분자공학과, *CJ 제일제당

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Thompson, R. C.; Swan, S. H.; Moore, C. J.; m Saal Frederick, S. Our Plastic Age. Phil. Trans. R. Soc. 2009, B364, 1973-1976.
  •  
  • 2. Rhodes, C. J. Plastic Pollution and Potential Solutions. Sci. Prog. 2018, 101, 207-260.
  •  
  • 3. Cha, D. S.; Manjeet, S. C. Biopolymer-Based Antimicrobial Packaging: A Review. Crit. Rev. Food Sci. Nutr. 2004,44, 223-237.
  •  
  • 4. Nigam, R.; Mahanta, B. An Overview of Various Biomimetic Scaffolds: Challenges and Applications in Tissue Engineering. J. Tissue Sci. Eng. 2014, 5, 1-5.
  •  
  • 5. Mano, J. F.; Silva, G. A.; Azevedo, H. S.; Malafaya, P. B.; Sousa, R. A.; Silva, S. S.; Boesel, L. F.; Oliveira, J. M.; Santos, T. C.; Marques, A. P.; Neves, N. M.; Reis, R. L. Natural Origin Biodegradable Systems in Tissue Engineering and Regenerative Medicine: Present Status and Some Moving Trends. J. R. Soc. Interface 2007, 4, 999-1030.
  •  
  • 6. Ninan, N.; Muthiah, M.; Park, I. K.; Wong, T. W.; Thomas, S.; Grohens, Y. Natural Polymer/Inorganic Material Based Hybrid Scaffolds for Skin Wound Healing. Polym. Rev. 2015, 55, 453-490.
  •  
  • 7. Siracusa V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Poly- propylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 1641.
  •  
  • 8. Mannina, G.; Presti, D.; Montiel-Jarillo, G.; Suárez-Ojeda, M. E. Bioplastic Recovery from Wastewater: A New Protocol for Polyhydroxyalkanoates (PHA) Extraction from Mixed Microbial Cultures. Bioresour. Technol. 2019,282, 361-369.
  •  
  • 9. Lemoigne, M. Products of Dehydration and of Polymerization of β-hydroxybutyric acid. Bull. Soc. Chim. Biol. 1926, 8, 770-782.
  •  
  • 10. Vanov, Y. M.; Katushkin, V. P.; Romanenko, V. V. Coronal Discharge Hygrometer Sensor without Edge Effects. Meas. Tech. 2014, 57, 725-728.
  •  
  • 11. Chen, G. Q.; Wu, Q. The Application of Polyhydroxyalkanoates as Tissue Engineering Materials. Biomaterials 2005,26, 6565-6578.
  •  
  • 12. Kunasundari, B.; Arza, C. R.; Maurer, F. H. J.; Murugaiyah, V.; Kaur, G.; Sudesh, K. Biological Recovery and Properties of Poly(3-hydroxybutyrate) from Cupriavidus necator H16. Sep. Purifi. Technol. 2017, 172, 1-6.
  •  
  • 13. Neves, A.; Müller, J. Use of Enzymes in Extraction of Poly- hydroxyalkanoates Produced by Cupriavidus necator. Biotechnol. Prog. 2012, 28, 1575-1580.
  •  
  • 14. Rehm, B. H. A.; Krüger, N.; Steinbüchel, A. A New Metabolic Link between Fatty Acid de Novo Synthesis and Polyhydroxy- alkanoic Acid Synthesis: The PHAG Gene from Pseudomonas Putida KT2440 Encodes a 3-Hydroxacyl-acyl Carrier Protein-Coenzyme a Transferase. J. Biol. Chem. 1998, 273, 24044-24051.
  •  
  • 15. Li, S. Y.; Dong, C. L.; Wang, S. Y.; Ye, H. M.; Chen, G. Q. Microbial Production of Polyhydroxyalkanoate Block Copolymer by Recombinant Pseudomonas Putida. Appl. Microbiol. Biotechnol. 2010, 90, 659-669.
  •  
  • 16. Cheng, S. T.; Chen, Z. F.; Chen, G. Q. The Expression of Cross-linked Elastin by Rabbit Blood Vessel Smooth Muscle Cells Cultured in Polyhydroxyalkanoate Scaffolds. Biomaterials 2008, 29, 4187-4194.
  •  
  • 17. Hassaini, L.; Kaci, M.; Touati, N.; Pillin, I.; Kervoelen, A.; Bruzaud, S. Valorization of Olive Husk Flour as A Filler for Biocomposites Based on Poly(3-hydroxybutyrate-co-3-hydroxy- valerate): Effects of Silane Treatment. Polym. Test 2017, 59, 430-440.
  •  
  • 18. Malmir, S.; Montero, B.; Rico, M.; Barral, L.; Bouza, R. Morphology, Thermal and Barrier Properties of Biodegradable Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Cellulose Nanocrystals. Compos. Part A Appl. Sci. Manuf. 2017, 93, 41-48.
  •  
  • 19. Seo, I. S.; Jung, Y. M.; Lee, Y. H. Production of P (3-hydroxybutyrate-3-hydroxyvalerate) and P (3-hydroxybutyrate-4-hydroxybutyrate) Using Transformant Alcaligenes latus Enforcing Its Own phbC Gene. J. Microbiol. Biotechnol. 2001, 11, 333-336.
  •  
  • 20. Pachekoski, W. M.; Dalmolin, C.; Agnelli, J. A. M. The Influence of the Industrial Processing on the Degradation of Poly (hydroxybutyrate)-PHB. Mater. Res. 2013, 16, 37-332.
  •  
  • 21. Bluhm, T. L.; Hamer G. K.; Marchessault, R. A.; Fyfe, C. A.; Veregin, R. P. Isodimorphism in Bacterial Poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 1986, 19, 2871-2876.
  •  
  • 22. Lopez-Abelairas, M.; Garcia-Torreiro, M.; Lu-Chau, T.; Lema, J. M.; Steinbuchel, A. Comparison of Several Methods for the Separation of Poly(3-hydroxybutyrate) from Cupriavidus necator H16 Cultures. Biochem. Eng. J. 2015, 93, 250-259.
  •  
  • 23. Godbole, S.; Latkar, M.; Chakrabarti, T. Preparation and Characterization of Biodegradable Poly-3-hydroxybutyrate–starch Blend Films. Bioresour. Technol. 2003, 86, 33-37.
  •  
  • 24. Avella, M.; Martuscelli, E.; Raimo, M. Review Properties of Blends and Composites Based on Poly(3-hydroxybutyrate) (PHB) and Poly(3-hydroxybutyrate-hydroxyvalerate)(PHBV) Copolymers. J. Mater. Sci. 2000, 35, 523-545.
  •  
  • 25. Rivera-Briso, A. L.; Serrano-Aroca, Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers 2018, 10, 732.
  •  
  • 26. Doi, Y.; Segawa, A.; Kunioka, M. Biosynthesis and Characteri- zation of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int. J. Biol. Macromol. 1990, 12, 106-111.
  •  
  • 27. D’Amico, D. A.; Manfredi, L. B.; Cyras, V. P. Crystallization Behavior of Poly(3-hydroxybutyrate) Nanocomposites Based on Modified Clays: Effect of Organic Modifiers. Thermochim. Acta 2012, 544, 47-53.
  •  
  • 28. Xu, C.; Qiu, Z. Crystallization Behavior and Thermal Property of Biodegradable Poly(3‐hydroxybutyrate)/multi‐walled Carbon Nanotubes Nanocomposite. Polym. Adv. Technol. 2011, 22, 538-544.
  •  
  • 29. Qiu, Z.; Ikehara, T.; Nishi, T. Miscibility and Crystallization Behavior of Biodegradable Blends of Two Aliphatic Polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprol- actone). Polymer 2005, 46, 11814-11819.
  •  
  • 30. El-hadi, A.; Schnabel, R.; Straube, E.; Muller, G. Effect of Melt Processing on Crystallization Behavior and Rheology of Poly (3‐hydroxybutyrate)(PHB) and Its Blends. Macromol. Mater. Eng. 2002, 287, 363-372.
  •  
  • 31. Rahayu, A.; Zaleha, Z.; Yahya, A. R. M.; Majid, Mi I. A. Production of Copolymer Poly(3-hydroxybutyrate-co-4-hydroxy- butyrate) Through a One-step Cultivation Process. World J. Microbiol. Biotechnol. 2008, 24, 2403-2409.
  •  
  • 32. Saito, Y.; Doi, Y. Microbial Synthesis and Properties of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas Acidovo- rans. Int. J. Biolo. Macromol. 1994, 16, 99-104.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(5): 551-558

    Published online Sep 25, 2022

  • 10.7317/pk.2022.46.5.551
  • Received on Feb 23, 2022
  • Revised on May 21, 2022
  • Accepted on Jun 12, 2022

Correspondence to

  • Ho-Jong Kang
  • Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Korea

  • E-mail: hjkang@dankook.ac.kr