Article
  • Study on the Thermal Conductive Properties of PA 6/Expanded Graphite Composites According to Fabrication and Processing Methods
  • Eun Jin Jang, Jun Seok Kim*, Dong Joon Moon*, Yeo Seong Yoon*, Mee Hye Oh*, and Youn Cheol Kim

  • Major in Polymer Science and Engineering, Kongju National University, 1223-34 Cheonan way, Cheonen 31080, Korea
    *Korea Automotive Technology Institute, 303 Pungse-ro, Pungse-myeon, Dongnam-gu, Cheonan-si, Chungnam 31214, Korea

  • PA 6/Expanded Graphite(EG) 복합체의 제조 및 가공방법에 따른 열전도 특성 연구
  • 장은진 · 김준석* · 문동준* · 윤여성* · 오미혜* · 김연철

  • 공주대학교 신소재공학부 고분자공학전공, *한국자동차연구원 강소특구연구단

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Chen, J.; Huang, X.; Sun, B.; Jiang, P. Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability. ACS Nano 2019, 13, 337-345.
  •  
  • 2. Dai, W.; Lv, L.; Lu, J.; Hou, H.; Yan, Q.; Alam, F. E.; Li, Y.; Zeng, X.; Yu, J.; Wei, Q.; Xu, X.; Wu, J.; Jiang, N.; Du, S.; Sun, R.; Xu, J.; Wong, C.-P.; Lin, C.-T. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods. ACS Nano 2019, 13, 1547-1554.
  •  
  • 3. Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory. Prog. Polym. Sci. 2016,61, 1-28.
  •  
  • 4. Chae, H. G.; Kumar, S. Making Strong Fibers. Science 2008, 319, 908-909.
  •  
  • 5. Morishita, T.; Katagiri, Y.; Matsunaga, T.; Muraoka, Y.; Fukumori, K. Design and Fabrication of Morphologically Controlled Carbon Nanotube/Polyamide-6-Based Composites as Electrically Insulating Materials having Enhanced Thermal Conductivity and Elastic Modulus. Compos. Sci. Technol. 2017,142, 41-49.
  •  
  • 6. Xu, Y.; Wang, X.; Zhou, J.; Song, B.; Jiang, Z.; Lee, E. M. Y.; Huberman, S.; Gleason, K. K.; Chen, G. Molecular Engineered Conjugated Polymer with High Thermal Conductivity. Science Advances 2018, 4, eaar3031.
  •  
  • 7. Tavman, I. H. Thermal and Mechanical Properties of Copper Powder Filled Poly(Ethylene) Composites. Powder Technol. 1997,91, 63-67.
  •  
  • 8. King, J. A.; Tucker, K. W.; Vogt, B. D.; Weber, E. H.; Quan, C. Electrically and Thermally Conductive Nylon 6,6. Polym. Compos. 1999,20, 643-654.
  •  
  • 9. Mazov, I. N.; Ilinykh, I. A.; Kuznetsov, V. L.; Stepashkin, A. A.; Ergin, K. S.; Muratov, D. S.; Tcherdyntsev, V. V.; Kuznetsov, D. V.; Issi, J.-P. Thermal Conductivity of Polypropylene-Based Composites with Multiwall Carbon Nanotubes with Different Diameter and Morphology. J. Alloys Compd. 2014, 586, S440-S442.
  •  
  • 10. Muratov, D. S.; Kuznetsov, D. V.; Il’inykh, I. A.; Mazov, I. N.; Stepashkin, A. A.; Tcherdyntsev, V. V. Thermal Conductivity of Polypropylene Filled with Inorganic Particles. J. Alloys Compd. 2014, 586, S451-S454.
  •  
  • 11. Chiang, T. H.; Ho, P.; Chang, Y. The Preparation of Dendrite- and Needle-Shaped Alloy Particles Coated on Copper Powders by Polyvinylpyrrolidone in Displacement Reaction and Thermal Conductivity on Composites’ Characterization. J. Alloys Compd. 2014,609, 162-167.
  •  
  • 12. Feller, J. F.; Linossier, I.; Grohens, Y. Conductive Polymer Composites- Comparative Study of Polyester-Short Carbon Fibers and Polyepoxy-Short Carbon Fibers Mechanical and Electrical Properties. Mater. Lett. 2002, 57, 64-71.
  •  
  • 13. Bellingen, C. V.; Probst, N.; Grivei, E.Specific Conductive Carbon Blacks in Plastic Applications.Polymers and Polymer Composites 2002, 10, 63-71.
  •  
  • 14. Giri, A.; Hopkins, P. E.; Wessel, J. G.; Duda, J. C. Kapitza Resistance and the Thermal Conductivity of Amorphous Superlattices. J. Appl. Phys. 2015, 118, 165303.
  •  
  • 15. Chirtoc, M.; Horny, N.; Tavman, I.; Turgut, A.; Kökey, I.; Omastová, M. Preparation and Photothermal Characterization of Nanocomposites Based on High Density Polyethylene Filled with Expanded and Unexpanded Graphite: Particle Size and Shape Effects. Int. J. Therm. Sci. 2012,62, 50-55.
  •  
  • 16. Noh, Y. J.; Kim, H. S.; Ku, B.; Khil, M.; Kim, S. Y. Thermal Conductivity of Polymer Composites with Geometric Characteristics of Carbon Allotropes. Adv. Eng. Mater. 2016, 18, 1127-1132.
  •  
  • 17. Wei, B.; zhang, L.; Yang, S. Polymer Composites with Expanded Graphite Network with Superior Thermal Conductivity and Electromagnetic Interference Shielding Performance. Chem. Eng. J. 2021,404, 126437.
  •  
  • 18. Sarı, A.; Karaipekli, A. Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material. Appl. Therm. Eng. 2007, 27, 1271-1277.
  •  
  • 19. Zheng, W.; Lu, X.; Wong, S. C. Electrical and Mechanical Properties of Expanded Graphite‐reinforced High‐density Polyethylene. J. Appl. Polym. Sci. 2004, 91, 2781-2788.
  •  
  • 20. Xia, R.; Sun, M.; Yang, B.; Qian, J.; Chen, P.; Cao, M.; Miao, J.; Su, L. Morphology, Thermal and Crystallization Properties of Polyamide-6/Boron Nitride (BN) Thermal Conductive Composites. Polymer 2018, 42, 230-241.
  •  
  • 21. Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal Conductivity of Polymer-based Composite: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41-85.
  •  
  • 22. Al-Hartomy, O. A.; Al-Salamy, F.; Al-Ghamdi, A. A.; Abdel Fatah, M.; Dishovsky, N.; El-Tantawy, F. Influence of Graphite Nanosheets on the Structure and Properties of PVC-Based Nanocomposites. J. Appl. Polym. Sci. 2011,120, 3628-3634.
  •  
  • 23. Su, J.; Zhao, Y.; Wang, X.; Dong, H.; Wang, S. Effect of Interface Debonding on the Thermal Conductivity of Microencapsulated-Paraffin Filled Epoxy Matrix Composites. Composites Part A, Applied Science and Manufacturing 2012,43, 325-332.
  •  
  • 24. Zhu, B. L.; Wang, J.; Zheng, H.; Ma, J.; Wu, J.; Wu, R. Investigation of Thermal Conductivity and Dielectric Properties of LDPE-Matrix Composites Filled with Hybrid Filler of Hollow Glass Microspheres and Nitride Particles. Composites Part B, Engineering 2015,69, 496-506.
  •  
  • 25. Mortazavi, B.; Baniassadi, M.; Bardon, J.; Ahzi, S. Modeling of Two-Phase Random Composite Materials by Finite Element, Mori–Tanaka and Strong Contrast Methods. Composites Part B, Engineering 2013,45, 1117-1125.
  •  
  • 26. Pak, S. Y.; Kim, H. M.; Kim, S. Y.; Youn, J. R. Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites with Mixed Boron Nitride and Multi-walled Carbon Nanotube Fillers. Carbon 2012, 50, 4830-4838.
  •  
  • 27. Han, Z.; Fina, A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36, 914-944.
  •  
  • 28. Kim, D. E.; Kim, Y. C. Study on the Physical and Rheological Properties of Nylon 66/MWCNT Composites. Appl. Chem. Eng. 2013, 24, 214-218.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(5): 601-607

    Published online Sep 25, 2022

  • 10.7317/pk.2022.46.5.601
  • Received on Apr 25, 2022
  • Revised on Jun 22, 2022
  • Accepted on Jun 28, 2022

Correspondence to

  • Youn Cheol Kim
  • Major in Polymer Science and Engineering, Kongju National University, 1223-34 Cheonan way, Cheonen 31080, Korea

  • E-mail: younkim@kongju.ac.kr