Article
  • Study on the Strain Sensor by Using Iron(III) Sulfonate Complex/Thermoplastic Polyurethane Composite
  • Pauline May A. Losaria and Jin-Heong Yim

  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheonandaero, Cheonan, Chungnam 31080, Korea

  • 철(III) 술포네이트 착화합물/열가소성 폴리우레탄 복합체의 스트레인 센서 응용 연구
  • Pauline May A. Losaria ·임진형

  • 공주대학교 공과대학 신소재공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Amjadi, M.; Kyung, K.-U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678-1698.
  •  
  • 2. Elgeneidy, K.; Neumann, G.; Jackson, M.; Lohse, N. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators. Front. Robot. AI 2018, 5, 2.
  •  
  • 3. Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors 2018, 18, 645.
  •  
  • 4. Hong, S. K.; Yang, S.; Cho, S. J.; Jeon, H.; Lim, G. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding. Sensors 2018, 18, 1171.
  •  
  • 5. Jeon, H.; Hong, S. K.; Kim, M. S.; Cho, S. J.; Lim, G. Omni-purpose Stretchable Strain Sensor Based on a Highly Dense Nanocracking Structure for Whole-body Motion Monitoring. ACS Appl. Mater. Interfaces 2017, 9, 41712-41721.
  •  
  • 6. Xian, H. J.; Cao, C R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H. Flexible Strain Sensors with High Performance Based on Metallic Glass Thin Film. Appl. Phys. Lett. 2017, 111, 121906.
  •  
  • 7. Liao, X.; Yan, X.; Lin, P.; Lu, S.; Tian, Y.; Zhang, Y. Enhanced Performance of ZnO Piezotronic Pressure Sensor through Electron-Tunneling Modulation of MgO Nanolayer. ACS Appl. Mater. Interfaces 2015, 7, 1602-1609.
  •  
  • 8. Losaria, P. M.; Yim, J.-H. A Highly Stretchable Large Strain Sensor Based on PEDOT-thermoplastic Polyurethane Hybrid Prepared via in situ Vapor Phase Polymerization. J. Ind. Engin. Chem. 2019, 74, 108-117.
  •  
  • 9. Losaria, P. M.; Yim, J.-H. Enhancement of Strain-Sensing Performance through Gas Phase Incorporation of Siloxane into Thermoplastic Polyurethane-Conducting Polymer Composite. Macromol. Chem. Phys. 2020, 2000155.
  •  
  • 10. Palicpic, C. M.; Khadka, R.; Yim, J.-H. Electromechanically Durable Graphene Oxide-Embedded Elastomer via Simultaneous Corporation of Siloxane/Polyol Based on the Dual Secondary Bond Architecture. ACS Appl. Polym. Mater. 2022, 4, 2614-2625.
  •  
  • 11. Park, D.; Park, Y.-K.; Selvam, S.; Yim, J.-H. Styrene-based Ternary Composite Elastomers Functionalized with Graphene Oxide-polypyrrole Under Iron(III)-alkyl Benzenesulfonate Oxidants for Supercapacitor Integrated Strain Sensor System. J. Energy Storage 2022, 51, 104543.
  •  
  • 12. Kim, K.-H.; Jang, N.-S.; Ha, S.-H.; Cho, J. H.; Kim, J.-M. Highly Sensitive and Stretchable Resistive Strain Sensors Based on Microstructured Metal Nanowire/Elastomer Composite Films. Small 2018, 14, 1704232.
  •  
  • 13. Amjadi, M.; Turan, M.; Clementson, C. P.; Sitti, M. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors. ACS Appl. Mater. Interfaces 2016, 8, 5618-5626.
  •  
  • 14. Khan, U.; May, P.; O’Neill, A.; Coleman, J. N. Development of Stiff, Strong, Yet Tough Composites by the Addition of Solvent Exfoliated Graphene to Polyurethane. Carbon 2010, 48, 4035-4041.
  •  
  • 15. Lin, L.; Liu, S.; Zhang, Q.; Li, X.; Ji, M.; Deng, H.; Fu, Q. Towards Tunable Sensitivity of Electrical Property to Strain for Conductive Polymer Composites Based on Thermoplastic Elastomer. ACS Appl. Mater. Interfaces 2013, 5, 5815-5824.
  •  
  • 16. Costa, P.; Silva, J.; Ansón-Casaos, A.; Martinez, M. T.; Abad, M. J.; Viana, J.; Lanceros-Mendez, S. Effect of Carbon Nanotube Type and Functionalization on the Electrical, Thermal, Mechanical and Electromechanical Properties of Carbon Nanotube/styrene-butadiene-styrene Composites for Large Strain Sensor Applications. Composites Part B 2014, 61, 136-146.
  •  
  • 17. Borghetti, M.; Serpelloni, M.; Sardini, E. Printed Strain Gauge on 3D and Low-Melting Point Plastic Surface by Aerosol Jet Printing and Photonic Curing. Sensors 2019, 19, 4220.
  •  
  • 18. Souri, H.; Banerjee, H.; Jusufi, A.; Radacsi, N.; Stokes, A. A.; Park, I.; Sitti, M.; Amjadi, M. Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications. Advan. Intel. Sys. 2020, 2, 2000039.
  •  
  • 19. Jiang, Y.; Liu, Z.; Matsuhisa, N.; Qi, D.; Leow, W. R.; Yang, H.; Yu, J.; Chen, G.; Liu, Y.; Wan, C.; Liu, Z.; Chen, X. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Adv. Mater. 2018, 30, 1706589.
  •  
  • 20. Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; Lamoureux, A.; Xu, L.; Shlian, M.; Shtein, M.; Glotzer, S. C.; Kotov, N. A. A Kirigami Approach to Engineering Elasticity in Nanocomposites Through Patterned Defects. Nat. Mater. 2015, 14, 785-789.
  •  
  • 21. Vandeparre, H.; Liu, Q.; Minev, I. R.; Suo, Z.; Lacour, S. P. Localization of Folds and Cracks in Thin Metal Films Coated on Flexible Elastomer Foams. Adv. Mater. 2013, 25, 3117-3121.
  •  
  • 22. Chortos, A.; Lim, J.; To, J. W. F.; Vosgueritchian, M.; Dusseault, T. J.; Kim, T.‐H.; Hwang, S.; Bao, Z. Highly Stretchable Transistors Using a Microcracked Organic Semiconductor. Adv. Mater. 2014, 26, 4253-4259.
  •  
  • 23. Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; Kim, J. Wearable Sensors: Modalities, Challenges, and Prospects. Lab Chip 2018, 18, 217-248.
  •  
  • 24. Deng, H.; Ji, M.; Yan, D.; Fu, S.; Duan, L.; Zhang, M.; Fu, Q. Towards Tunable Resistivity-strain Behavior Through Construction of Oriented and Selectively Distributed Conductive Networks in Conductive Polymer Composites. J. Mater. Chem. A 2014, 2, 10048-10058.
  •  
  • 25. Duan, L.; Fu, S.; Deng, H.; Zhang, Q.; Wang, K.; Chen, F.; Fu, Q. The Resistivity-strain Behavior of Conductive Polymer Composites: Stability and Sensitivity. J. Mater. Chem. A 2014, 2, 17085-17098.
  •  
  • 26. Kim, Y. J.; Kang, H. J.; Moerk, C. T.; Lee, B.-T.; Choi, J. S.; Yim, J.-H. Flexible, Biocompatible, and Electroconductive Polyurethane Foam Composites Coated with Graphene Oxide for Ammonia Detection. Sens. Actuators, B 2021, 344, 130269.
  •  
  • 27. Park, D.-D.; Yim, J.-H. Preparation of the Electro-Mechanically Durable rGO-SEBS Composite Elastomer and Its Application as a Strain Sensor. Polym. Korea 2022, 46, 81-87.
  •  
  • 28. Kingston, C.; Zepp, R.; Andrady, A.; Boverhof, D.; Fehir, R.; Hawkins, D.; Roberts, J.; Sayre, P.; Shelton, B.; Sultan, Y.; Vejins, V.; Wohlleben, W. Release Characteristics of Selected Carbon Nanotube Polymer Composites. Carbon 2014, 68, 33-57.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(5): 646-653

    Published online Sep 25, 2022

  • 10.7317/pk.2022.46.5.646
  • Received on May 16, 2022
  • Revised on Jun 22, 2022
  • Accepted on Jun 22, 2022

Correspondence to

  • Jin-Heong Yim
  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheonandaero, Cheonan, Chungnam 31080, Korea

  • E-mail: jhyim@kongju.ac.kr