Article
  • Influence of Compatibilization and Internal Lubricant on the Mechanical and Thermo-mechanical Properties of PLA/TPU Compound
  • Ali Avci , Aysegul Akdogan Eker*, and Mehmet Safa Bodur**

  • Faculty of Engineering, Department of Mechanical Engineering, Hakkari University, Hakkari 30000, Türkiye
    *Department of Mechanical Engineering, Yildiz Technical University, Istanbul 34349, Türkiye
    **Department of Material Science and Nanotechnology Engineering, Yeditepe University, Istanbul 34755, Türkiye

  • PLA/TPU 화합물의 기계적 및 열역학적 특성에 미치는 호환성 및 내부윤활제의 영향
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Ata, S.; Basak, S.; Mal, D.; Singha, N. K. Synthesis and Self-Assembly Behavior of POSS Tethered Amphiphilic Polymer Based on Poly(Caprolactone) (PCL) Grafted with Poly(Acrylic Acid) (PAA) via ROP, ATRP, and CuAAC Reaction. J. Polym. Res. 2017, 24, 1-13.
  •  
  • 2. Zhang, H. C.; Kang, B. hao; Chen, L. S.; Lu, X. Enhancing Toughness of Poly(Lactic Acid)/Thermoplastic Polyurethane Blends via Increasing Interface Compatibility by Polyurethane Elastomer Prepolymer and Its Toughening Mechanism. Polym. Test. 2020, 87, 106521.
  •  
  • 3. Mo, X. Z.; Wei, F. X.; Tan, D. F.; Pang, J. Y.; Lan, C. B. The Compatibilization of PLA-g-TPU Graft Copolymer on Polylactide/Thermoplastic Polyurethane Blends. J. Polym. Res. 2020, 27.
  •  
  • 4. Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super Tough Poly(Lactic Acid) Blends: A Comprehensive Review. RSC Adv. 2020, 10, 13316-13368.
  •  
  • 5. Brown, S. B. Reactive Compatibilization. Polym. Blend. Handbook 2014, 517-675.
  •  
  • 6. Ulf B. Bioplastics and Biocomposites, Hanser: Munich, 2019.
  •  
  • 7. Li, H.; Huneault, M. A. Crystallization of PLA/Thermoplastic Starch Blends. Inter. Polym. Process. 2008, 412-418.
  •  
  • 8. Bajpai, P. K.; Singh, I.; Madaan, J. Development and Charac- terization of PLA-Based Green Composites: A Review. J. Thermoplas. Compos. Mater. 2014, 27, 52-81.
  •  
  • 9. Bindhu, B.; Renisha, R.; Roberts, L.; Varghese, T. O. Boron Nitride Reinforced Polylactic Acid Composites Film for Pack- aging: Preparation and Properties. Polym. Test. 2018, 66, 172-177.
  •  
  • 10. Kim, Y. J.; Selvan, S.; Yim, J. H. PLA Preparation of Porous TPU-PPy Flexible Composite Using 3D Printer and Its Application as Electrode Scaffold for Energy Storage Devices. Polym. Korea 2022, 46, 389-396.
  •  
  • 11. Nofar, M. Effect of TPU Hard Segment Content on the Rheological and Mechanical Properties of PLA/TPU Blends. J. Appl. Polym. 2020, 137, 1-11.
  •  
  • 12. Kim, H. E.; Nam, B. U. Study on Crystallization Kinetics and Thermal Properties of PCF-C0-EF/PLA Blends. Polym. Korea 2018, 42, 610-619.
  •  
  • 13. Kaynak, C.; Meyva, Y. Use of Maleic Anhydride Compatibili- zation to Improve Toughness and Other Properties of Polylactide Blended with Thermoplastic Elastomers. Polym. Adv. Technol. 2014, 25, 1622-1632.
  •  
  • 14. Wang, Y.; Mei, Y.; Wang, Q.; Wei, W.; Huang, F.; Li, Y.; Li, J.; Zhou, Z. Improved Fracture Toughness and Ductility of PLA Composites by Incorporating a Small Amount of Surface-Modified Helical Carbon Nanotubes. Compos. Part B: Eng. 2019, 162, 54-61.
  •  
  • 15. Jia, S.; Wang, Z.; Zhu, Y.; Chen, L.; Fu, L. Composites of Poly(Lactic) Acid/Thermoplastic Polyurethane/Mica with Compatibilizer: Morphology, Miscibility and Interphase. RSC Adv. 2015, 5, 98915-98924.
  •  
  • 16. Jan W. G. Encyclopedic Dictionary of Polymers; Springer: New York, 2007.
  •  
  • 17. Al-Malaika, S.; Axtell, F.; Gilbert, M. Additives for Plastics. In Brydson's Plastics Materials (Eighth Edition); Gilbert, M., Eds.; Elsevier: Oxford, 2017; pp 127-168.
  •  
  • 18. Tomić, N. Z.; Marinković, A. D. Chapter 4 - Compatibilization of polymer blends by the addition of graft copolymers. In Micro and Nano Scale Phase Morphologies, Interphase Characterization and Properties; Ajitha, A. R., Sabu, T., Eds.; Elsevier: Oxford, 2020; pp 103-144.
  •  
  • 19. Sabzi, F. Gas Transport Through Polymer Blends. In Transport Properties of Polymeric Membranes; Sabu, T., Runcy, W., Anil, K. S., Soney, C. G., Eds.; Elsevier: Oxford, 2018; pp 517-532.
  •  
  • 20. Kim, N. K.; Park, G. W.; Yu, J. K.; Kim, H. J.; Hyun, K. Effect of EVA-g-MAH on Water Absorption Properties of TPU/EVA Blends Characterization, Polymers and Plastics. Polym. Korea 2022, 46, 251-256.
  •  
  • 21. Jašo, V.; Glenn, G.; Klamczynski, A.; Petrović, Z. S. Biodegrad- ability Study of Polylactic Acid/Thermoplastic Polyurethane Blends. Polym. Test. 2015, 47, 1-3.
  •  
  • 22. Meyva-Zeybek, Y.; Kaynak, C. Loss of Thermoplastic Elastomer Toughening in Polylactide after Weathering. J. Appl. Poly. Sci. 2019, 136.
  •  
  • 23. Hong, H.; Yang, L.; Yuan, Y.; Qu, X.; Chen, F.; Wei, J.; Liu, C. Preparation, Rheological Properties and Primary Cytocompatibility of TPU/PLA Blends as Biomedical Materials. J. Wuhan Univ. Technol., Materials Science Edition 2016, 31, 211-218.
  •  
  • 24. Samat, A. A.; Hamid, Z. A. A.; Jaafar, M.; Yahaya, B. H. Preliminary Study on Reactive Compatibilisation of Poly-Lactic Acid with Maleic Anhydride and Dicumyl Peroxide for Fabrication of 3D Printed Filaments. AIP Conf. Proc. 2020, 2267, 020014.
  •  
  • 25. Dai, L.; Wang, X.; Zhang, J.; Wang, F.; Ou, R.; Song, Y. Effects of Lubricants on the Rheological and Mechanical Properties of Wood Flour/Polypropylene Composites. J. Appl. Polym. Sci. 2019, 136, 1-9.
  •  
  • 26. Detyothin, S.; Selke, S. E. M.; Narayan, R.; Rubino, M.; Auras, R. A. Effects of Molecular Weight and Grafted Maleic Anhydride of Functionalized Polylactic Acid Used in Reactive Compatibilized Binary and Ternary Blends of Polylactic Acid and Thermoplastic Cassava Starch. J. Appl. Polym. Sci. 2015, 132, 1-15.
  •  
  • 27. Kim, J. A Simple Method to Produce Fiber Metal Laminates with Enhanced Mechanical Properties Using an Ethylene Vinyl Acetate (EVA)-based Adhesive Film. Polym. Korea 2019, 43, 295-301.
  •  
  • 28. Meyva, Y.; Kaynak, C. Toughening of Polylactide by Bio-Based and Petroleum-Based Thermoplastic Elastomers. Inter. Polym. Process. 2015, 30, 593-602.
  •  
  • 29. Clasen, S. H.; Müller, C. M. O.; Pires, A. T. N. Maleic Anhydride as a Compatibilizer and Plasticizer in TPS/PLA Blends. J. Braz. Chem. Soc. 2015, 26, 1583-1590.
  •  
  • 30. Bai, Z.; Dou, Q. Rheology, Morphology, Crystallization Behaviors, Mechanical and Thermal Properties of Poly(Lactic Acid)/Polypropylene/Maleic Anhydride-Grafted Polypropylene Blends. J. Polym. Envir. 2018, 26, 959-969.
  •  
  • 31. Gao, H.; Jun, F. S.; Tang, G. Mechanical, Thermal, and Biodegradability Properties of PLA_modified Starch Blends. Inspring Plast. Profess. 2011, 32, 2093-2100.
  •  
  • 32. Chauhan, S.; Raghu, N.; Raj, A. Effect of Maleic Anhydride Grafted Polylactic Acid Concentration on Mechanical and Thermal Properties of Thermoplasticized Starch Filled Polylactic Acid Blends. Polym. Polym. Compos. 2021, 29, 400-410.
  •  
  • 33. Tham, W. L.; Ishak, M.; Chow, W. S. Mechanical and Thermal Properties Enhancement of Poly(Lactic Acid)_Halloysite Nano- composites by Maleic-Anhydride Functionalized Rubber. J. Macromol. Sci., Part B 2014, 53, 371-382.
  •  
  • 34. Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658-2667.
  •  
  • 35. Wang, S. C.; Xiang, H. X.; Wen, X. S.; Zhou, Z.; Zhu, M. F. Preparation and Characterization of TPU Toughened PLA Elastic Fibers. Mater. Sci. Forum 2014, 789, 117-121.
  •  
  • 36. Morandim-Giannetti, A. A.; Agnelli, J. A. M.; Lanças, B. Z.; Magnabosco, R.; Casarin, S. A.; Bettini, S. H. P. Lignin as Additive in Polypropylene/Coir Composites: Thermal, Mechanical and Morphological Properties. Carbohydr. Polym. 2012, 87, 2563-2568.
  •  
  • 37. Akonda, M.; Alimuazzam, S.; Shah, D. U.; Gaudio, Rahman, M. Physicao-Mechanical, Thermal and Biodegradation Performance of Random Flax/Polylactic Acid and Unidirectional Flax/Polylactic Acid. Fibers 2018, 6, 539-547.
  •  
  • 38. Bax, B.; Müssig, J. Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites. Compos. Sci. Technol. 2008, 68, 1601-1607.
  •  
  • 39. Atiqah, A.; Jawaid, M.; Ishak, M. R.; Sapuan, S. M. Effect of Alkali and Silane Treatments on Mechanical and Interfacial Bonding Strength of Sugar Palm Fibers with Thermoplastic Polyurethane. J. Natur. Fiber 2018, 15, 251-261.
  •  
  • 40. Gamon, G.; Evon, P.; Rigal, L. Twin-Screw Extrusion Impact on Natural Fibre Morphology and Material Properties in Poly(Lactic Acid) Based Biocomposites. Ind. Crops Prod. 2013, 46, 173-185.
  •  
  • 41. Tuominen, J.; Kylma, J.; Kapanen, A.; Venelampi, O.; Itävaara, M.; Seppälä, J. Biodegradation of Lactic Acid Based Polymers under Controlled Composting Conditions and Evaluation of the Ecotoxicological Impact. Biomacromolecules 2002, 3, 445-455.
  •  
  • 42. Seppälä, J. V.; Helminen, A. O.; Korhonen, H. Degradable Polyesters through Chain Linking for Packaging and Biomedical Applications. Macromol. Biosci. 2004, 4, 208-217.
  •  
  • 43. Detyothin, S.; Selke, S. E. M.; Narayan, R.; Rubino, M.; Auras, R. Reactive Functionalization of Poly(Lactic Acid), PLA : Effects of the Reactive Modi Fi Er , Initiator and Processing Conditions on the Fi Nal Grafted Maleic Anhydride Content and Molecular Weight of PLA. Polym. Degrad. Stab. 2013, 98, 2697-2708.
  •  
  • 44. Hwang, S. W.; Lee, S. B.; Lee, C. K.; Lee, J. Y.; Shim, J. K.; Selke, S. E. M.; Soto-Valdez, H.; Matuana, L.; Rubino, M.; Auras, R. Grafting of Maleic Anhydride on Poly(L-Lactic Acid). Effects on Physical and Mechanical Properties. Polym. Test. 2012, 31, 333-344.
  •  
  • 45. Lu, Q. W. Thermoplastic Polyurethane (TPU)/Polyolefin (PO) Blends; University of Minnesota: Minnesota, 2003.
  •  
  • 46. Carlson, D.; Nie, L.; Narayan, R.; Dubois, P. Maleation of Polylactide (PLA) by Reactive Extrusion. J. Appl. Polym. Sci. 1999, 72, 477-485.
  •  
  • 47. Utracki, L. A.; Wilkie, C. A. Polymer Blends Handbook; Springer: New York, 2003.
  •  
  • 48. Gaymans, R. J.; Zuiderduin, W. C. J.; Westzaan, C.; Hue, J. Toughening of Polypropylene with Calcium Carbonate Particles. Polymer 2003, 44, 261-275.
  •  
  • 49. Maier, C.; Calafut, T. Additives. In Polypropylene In The Definitive User's Guide and Databook; Clive, M., Teresa, C., Eds., Elsevier: Oxford, 1998; pp 27-47.
  •  
  • 50. Hong, H.; Wei, J.; Yuan, Y.; Chen, F. P.; Wang, J.; Qu, X.; Liu, C. S. A Novel Composite Coupled Hardness with Flexiblene- ssâpolylactic Acid Toughen with Thermoplastic Polyurethane. J. Appl. Polym. Sci. 2011, 121, 855-861.
  •  
  • 51. Shakouri, Z.; Nazockdast, H. Microstructural Development and Mechanical Performance of PLA/TPU Blends Containing Geometrically Different Cellulose Nanocrystals. Cellulose 2018, 25, 7167-7188.
  •  
  • 52. Feng, F.; Ye, L. Morphologies and Mechanical Properties of Polylactide/Thermoplastic Polyurethane Elastomer Blends. J. Appl. Polym. Sci. 2011, 119, 2778-2783.
  •  
  • 53. Helena, S.; Bettini, P.; Paula, M.; Miranda, P. De; Lotti, C.; Henrique, L.; Mattoso, C.; Andres, P.; Mu, R. Effect of Lubricant on Mechanical and Rheological Properties of Compatibilized PP/Sawdust Composites. Carbohydr. Polym. 2013, 94, 800-806.
  •  
  • 54. Nofar, M.; Mohammadi, M.; Carreau, P. J. Effect of TPU Hard Segment Content on the Rheological and Mechanical Properties of PLA/TPU Blends. J. Appl. Polym. Sci. 2020, 137, 49387.
  •  
  • 55. Han, J. J.; Huang, H. X. Preparation and Characterization of Biodegradable Polylactide/Thermoplastic Polyurethane Elastomer Blends. J. Appl. Polym. Sci. 2011, 120, 3217-3223.
  •  
  • 56. Kamal, M. R.; Khoshkava, V. Effect of Cellulose Nanocrystals (CNC) on Rheological and Mechanical Properties and Crystalli- zation Behavior of PLA/CNC Nanocomposites. Carbohydr. Polym. 2015, 123, 105-114.
  •  
  • 57. Zainal, N. F. A.; Chan, C. H. Crystallization and Melting Behavior of Compatibilized Polymer Blends. Compatibilization Polym. Blend. 2020, 391-433.
  •  
  • 58. Sharma, S.; Singh, A. A.; Majumdar, A.; Butola, B. S. Harnessing the Ductility of Polylactic Acid/Halloysite Nanocomposites by Synergistic Effects of Impact Modifier and Plasticiser. Composites Part B 2020, 188, 107845.
  •  
  • 59. Bernardes, G. P.; da Rosa Luiz, N.; Santana, R. M. C.; de Camargo Forte, M. M. Influence of the Morphology and Viscoelasticity on the Thermomechanical Properties of Poly(Lactic Acid)/Thermo- plastic Polyurethane Blends Compatibilized with Ethylene-Ester Copolymer. J. Appl. Poly. Sci. 2020, 137, 48926.
  •  
  • 60. Liu, T.; Huang, R.; Qi, X.; Dong, P.; Fu, Q. Facile Preparation of Rapidly Electro-Active Shape Memory Thermoplastic Polyurethane/Polylactide Blends via Phase Morphology Control and Incorpo- ration of Conductive Fillers, Polymer 2017, 114, 28-35.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(5): 671-683

    Published online Sep 25, 2022

  • 10.7317/pk.2022.46.5.671
  • Received on Jun 2, 2022
  • Revised on Jul 26, 2022
  • Accepted on Aug 2, 2022

Correspondence to

  • Ali Avci
  • Faculty of Engineering, Department of Mechanical Engineering, Hakkari University, Hakkari 30000, Türkiye

  • E-mail: aliavci@hakkari.edu.tr