Article
  • Thermal and Mechanical Properties of Antimicrobial Poly(lactic acid) Composites
  • Seogjun Kim and Eunki Noh*

  • Department of Chemical Engineering, Kunsan National University, Daehakro 558, Kunsan, Chonbuk 54150, Korea
    *Bestech Incorporated Co., Dongkunsanro 942, Seosumyeon, Kunsan, Chonbuk 54051, Korea

  • 항균 폴리유산 복합재료의 열적 및 기계적 물성
  • 김석준 ·노은기*

  • 군산대학교 공과대학 화학공학과, *(주)베스텍

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Hong, C.; Han, D. The Present Situation and Prediction of Next Generation Biomaterial Poly(lactic acic).Polym. Sci. Technol. 2010, 21, 41-44.
  •  
  • 2. Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G. M.; Kenny, J. M.; Puglia, D. Synergic Effect of Cellulose and Lignin Nanostructures in PLA Based Systems for Food Antibacterial Packaging. Eur. Polym. J. 2016, 79, 1-12.
  •  
  • 3. Râpă, M.; Miteluţ, A. C.; Tănase, E. E.; Grosu, E.; Popescu, P.; Popa, M. E.; Rosnes, J. T.; Sivertsvik, M.; Darie-Niţă, R. N.; Vasile, C. Influence of Chitosan on Mechanical, Thermal, Barrier and Antimicrobial Properties of PLA-biocomposites for Food Packaging. Composites Part B 2016, 102, 112-121.
  •  
  • 4. Srimalanon, P.; Prapagdee, B.; Markpin, T.; Sombatsompop, N. Effects of DCP as a Free Radical Producer and HPQM as a Biocide on the Mechanical Properties and Antibacterial Performance of in situ Compatibilized PBA/PLA Blends. Polym. Test. 2018, 67, 331-341.
  •  
  • 5. Shankar, S.; Wang, L-F.; Rhim, J-W. Incorporation of Zinc Oxide Nanoparticles Improved the Mechanical, Water Vapor Barrier, UV-light Barrier, and Antibacterial Properties of PLA-based Nanocompsite Films. Mater. Sci. Eng. C 2018, 93, 289-298.
  •  
  • 6. Wang, Y.; Hou, J.; Huang, Y.; Fu, Y. Structure-controlled Lignin Complex for PLA Composites with Outstanding Antibacterial, Fluorescent and Photochemical Conversion Properties. Int. J. Biol. Macromol. 2022, 194, 1002-1009.
  •  
  • 7. Zhou, J.; Wang, B.; Xu, C.; Xu, Y.; Tan, H.; Zhang, X.; Zhang, Y. Performance of Composite Materials by Wood Fiber/Poly- dopamine/Silver Modified PLA and the Antibacterial Property. J. Mater. Res. Technol. 2022, 18, 428-438.
  •  
  • 8. Chong, W. J.; Shen, D.; Li, Y.; Trinchi, A.; Pejak, D.; Kyratzis, I.; Sola, A.; Wen, C. Additive Manufacturing of Antibacterial PLA-ZnO Nanocomposites: Benefits, Limitations, and Open Challenges. J. Mater. Sci. Technol. 2022, 111, 120-151.
  •  
  • 9. Salahuddin, N.; Abdelwahab, M.; Gaber, M.; Elneanaey, S. Synthesis and Design of Norfloxacin Drug Delivery System Based on PLA/TiO2 Nanocomposites: Antibacterial and Antitumor Activities. Mater. Sci. Eng. C 2020, 108, 110337, 1-11.
  •  
  • 10. Mr, S. N.; Srinivasan, A. K.; P, K.; S, J. S.; G, A. K. Sciff’s Base (SB) Modified Zirconium Dioxide Reinforced PLA Bio-composite Film for Industrial Packaging Applications. Compos. Commun. 2021, 25, 100750.
  •  
  • 11. Zhou, A.; Zhang, Y.; Zhang, X.; Deng, Y.; Huang, D.; Huang, C.; Qu, Q. Quaternized Chitin/Tannic Acid Bilayers Layer-by-Layer Deposited Poly(lactic acid)/Polyurethane Nanofibrous Mats Decorated with Photoresponsive Complex and Silver Nano- particles for Antimicrobial Activity. Int. J. Biol. Macromol. 2022, 201, 448-457.
  •  
  • 12. Cárdenas-Triviño, G.; Linares-Bermúdez, N.; Núñez-Decap, M. Synthesis and Properties of Bionanocomposites of Polyhydroxy- butyrate-Polylactic Acid Doped with Copper and Silver Nano- particles. Int. J. Polym. Sci. 2019, 2019, 4520927.
  •  
  • 13. Suwanamornlert, P.; Keddongfag, N.; Sane, A.; Chinsirikul, W.; Zou, W.; Chonhenchob, V. Poly(lactic acid)/Poly(butylene-succinate-co-adipate) (PLA/PBSA) Blend Films Containing Thymol as Alternative to Synthetic Preservatives for Active Packaging of Bread. Food Packag. Shelf Life 2020, 25, 100515.
  •  
  • 14. Boonruang, K.; Kerddonfag, N.; Chinsirikul, W.; Mitcham, E. J.; Chonhenchob, V. Antifungal Effect of Poly(lactic acid) Films Containing Thymol and R-(-)-Carvone against Anthranose Pathogens Isolated from Avocado and Citrus. Food Control 2017, 78, 85-93.
  •  
  • 15. Stoleru, E; Dumitriu, R. P.; Munteanu, B. S.; Zaharescu, T.; Tănase, E. E.; Mitelut, A.; Ailiesei, G-L.; Vasile, C. Novel Procedure to Enhance PLA Surface Properties by Chitosan Irreversible Immobilization. Appl. Surf. Sci. 2016, 367, 407-417.
  •  
  • 16. Zhang, M.; Tao, N.; Li, L.; Xu, C.; Deng, S.; Wang, Y. Non-migrating Active Antibacterial Packaging and Its Application in Grass Carp Fillets. Food Packag. Shelf Life 2022, 31, 100786.
  •  
  • 17. Odoňez, R.; Atarés, L.; Chiralt, A. Antibacterial Properties of Cinnamic and Ferulic Acids Incorporated to Starch and PLA Monolayer and Multilayer Films. Food Control 2022, 136, 108678.
  •  
  • 18. Klinmalai, P.; Srisa, A.; Laorenza, Y.; Katekhong, W.; Harnkarnsujarit, N. Antifungal and Plasticization Effects of Carvacrol in Biodegradable Poly(lactic acid) and Poly(butylene adipate terephthalate) Blend Films for Bakery Packaging. LWT-Food Sci. Technol. 2021, 152, 112356.
  •  
  • 19. Wang, D.; Sun, Z.; Sun, J.; Liu, F.; Du, L.; Wang, D. Preparation and Characterization of Polylactic Acid Nanofiber Films Loading Perilla Essential Oil for Antibacterial Packaging of Chilled Chicken. Int. J. Biol. Macromol. 2021, 192, 379-388.
  •  
  • 20. Endo, E. H.; Makimori, R. Y.; Companhoni, M. V. P.; Ueda-Nakamura, T.; Nakamura, C. V.; Dias Filho, B. P. Ketoconazole-loaded Poly-(lactic acid) Nanoparticles: Characterization and Improvement of Antifungal Efficacy in vitro against Candida and Dermatophytes. J. Mycol. Med. 2020, 30, 101003.
  •  
  • 21. Chinavinijkul, P.; Riansuwan, K.; Kiratisin, P.; Srisang, S.; Nasongkla, N. Dip- and Spray-coating of Schanz Pin with PLA and PLA Nanospheres for Prolonged Antibacterial Activity. J. Drug Delivery Sci. Technol. 2021, 65, 102667.
  •  
  • 22. Yao, J.; Liu, J.; Zhi, H.; Tao, H.; Xie, X.; Shi, Q. Surface-modified Polylactic Acid Nanospheres with Chitosan for Antibacterial Activity of 1,2-Benzisothiazolin-3-one. Carbohydr. Polym. 2021, 272, 118406.
  •  
  • 23. Yamamoto, M.; Inokoshi, M.; Tamura, M.; Shimizubata, M.; Nozaki, K.; Takahashi, R.; Yoshihara, K.; Minakuchi, S. Development of 4-META/MMA-TBB Resin with Added Benzalkonium Chloride or Cetylpyridinium Chloride as Antimicrobial Restorative Materials for Root Caries. J. Mech. Behav. Biomed. Mater. 2021, 124, 104838.
  •  
  • 24. Wang, J.; Xue, J.; Dong, X.; Yu, Q.; Baker, S. N.; Wang, M.; Huang, H. Antimicrobial Properties of Benzalkonium Chloride Derived Polymerizable Deep Eutectic Solvent. Int. J. Pharm. 2020, 575, 119005.
  •  
  • 25. Kim, T.-K.; Jang, M.; Hwang, Y. S. Adsorption of Benzalkonium Chlorides onto Polyethylene Microplastics: Mechanism and Toxicity Evaluation. J. Hazard. Mater. 2022, 426, 128076.
  •  
  • 26. Mahajan, R. K.; Nandni, D.; Hassan, P. A.; Aswal, V. K. Microstructure and Mixing Behaviour of Benzalkonium Chloride with Triblock Polymers in Aqueous Medium. Colloid. Surf., A 2011, 386, 1-10.
  •  
  • 27. Roeding J.; Lange, S.; Schmaus G.; Joppe, H.; Pillai, R. Synergistic Mixtures of at least One 1,2 Alkanediol such as 1,2-Hexanediol and 1,2-Octanediol with a Further Compound Having Antimicrobial Properties. US Patent 0265352 A1, 2007.
  •  
  • 28. Choi, E. Effect of Phenoxyethanol and Alkane Diol Mixture on the Antimicrobial Activity and Antiseptic Ability in Cosmetics. Kor. J. Aesthet. Cosmetol. 2015, 13, 213-220.
  •  
  • 29. Okugawa, M.; Watanabe, T.; Miura, M.; Konno, H.; Yao, S.; Nonomura, Y. Antibacterial Activity of 1,2-Alkanediol against Staphylococcus aureus and Staphylococcus epidermidis. J. Oleo Sci. 2019, 68, 759-763.
  •  
  • 30. Kabara, J. J.; Orth, D. S. Preservative-Free and Self-Preserving Cosmetics and Drugs Product: The Future. In Preservative-Free and Self-Preserving Cosmetics and Drugs: Principles and Practice, 1st Ed.; Kabara, J. J., Orth, Eds.; D. S.; Cosmetic Science and Technology Series 16; CRC Press: Boca Raton, 1997; pp 243-261.
  •  
  • 31. Roy, S.; Rhim, J-W.; Jaiswal, L. Bioactive Agar-based Functional Composite Film Incorporated with Copper Sulfide Nanoparticles. Food Hydrocolloids 2019, 93, 156-166.
  •  
  • 32. Li, F.; Liu, Y.; Gao, Y.; Zhang, Y.; Zhe, T.; Guo, Z.; Sun, X.; Wang, Q.; Wang, L. Copper Sulfide Nanoparticle-Carrageenan Films for Packaging Application. Food Hydrocolloids 2020, 109, 106094.
  •  
  • 33. Pourhashem, S.; Self, A.; Saba, F.; Nezhad, E. G.; Ji, X.; Zhou, Z.; Zhai, X.; Mirzaee, M.; Duan, J.; Rashidi, A.; Hou, B. Antifouling Nanocomposite Polymer Coatings for Marine Applications: A Review on Experiments, Mechanisms, and Theoretical Studies. J. Mater. Sci. Technol. 2022, 118, 73-113.
  •  
  • 34. Bianculli, R. H.; Mase, J. D.; Schulz, M. D. Antiviral Polymers: Past Approches and Future Possibilities. Macromolecules 2020, 53, 9158-9186.
  •  
  • 35. Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; Llyod-Smith, J. O.; de Wit, E.; Munster, V. J. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564-1567.
  •  
  • 36. Mouritz, A. P.; Galos, J.; Linklater, D. P.; Landani, R. B.; Kandare, E.; Crawford, R. J.; Ivanova, E. P. Towards Antiviral Polymer Composites to Combat COVID-19 Transmission. Nano Select 2021, 2, 2061-2071.
  •  
  • 37. Xi, X.; Zhen, W.; Bian, S.; Wang, W. Enhancement of Mechanical and Antimicrobial Properties of Thermoplastic Poly(lactic acid)/Quaternized Chitosan-Saponite Nanocomposites. Polym. Korea 2015, 39, 601-610.
  •  
  • 38. Garlotta, D. A Literature Review of Poly(latic acid). J. Polym. Environ. 2001, 9, 63-84.
  •  
  • 39. Park, Y.; Lee, J. Thermal Properties of Poly(lactic acid) Film Containing Antibacterial Quercetin. Polym. Korea 2022, 46, 223-228.
  •  
  • 40. Kemberger-Fischer, I. A.; Krischek, C.; Strommenger, B.; Fiegen, U.; Beyerbach, M.; Kreienbrock, L.; Klein, G.; Kehrenberg, C. Susceptibility of Methicillin-Resistant and -Susceptible Staphylococcus aureus Isolates of Various Clonal Lineages from Germany to Eight Biocides. Appl. Environ. Microbiol. 2018, 84, DOI: 10.1128/AEM.00799-18.
  •  
  • 41. Elder, R. L. Final Report on the Safety Assesment of Benzalkonium Chloride. J. Am. Coll. Toxicol. 1989, 8, 589-625.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(5): 684-694

    Published online Sep 25, 2022

  • 10.7317/pk.2022.46.5.684
  • Received on Jun 9, 2022
  • Revised on Jul 22, 2022
  • Accepted on Aug 1, 2022

Correspondence to

  • Seogjun Kim
  • Department of Chemical Engineering, Kunsan National University, Daehakro 558, Kunsan, Chonbuk 54150, Korea

  • E-mail: sjkim@kunsan.ac.kr