Article
  • Preparation, Characterization of Chitosan-Coated/Uncoated Boron Nanoparticles and In-Vitro Evaluation of Their Antimicrobial Effects
  • Rukiye Sevinç Özakar# , Mehmet Semih Bingöl*, Mehmet Cemal Adıgüzel**, and Emrah Özakar#,†

  • Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Türkiye
    *Eastern Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, 25240 Erzurum, Türkiye
    **Department of Microbiology, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Türkiye

  • 키토산 피복/비피복 붕소 나노입자의 합성 및 분석, 그리고 항균효과 체외평가
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Ciofani, G.; Danti, S.; D’Alessandro, D.; Moscato, S.; Menciassi, A. Assessing Cytotoxicity of Boron Nitride Nanotubes: Interference with the MTT Assay. Biochem. Biophys. Res. Commun. 2010, 394, 405-411.
  •  
  • 2. Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular Uptake of Nanoparticles: Journey Inside the Cell. Chem. Soc. Rev. 2017, 46, 4218-4244.
  •  
  • 3. Rennick, J. J.; Johnston, A. P. R.; Parton,; R. G. Key Principles and Methods for Studying the Endocytosis of Biological and Nanoparticle Therapeutics. Nat. Nanotechnol. 2021, 16, 266-276.
  •  
  • 4. Li, J.; Chen, C.; Xia, T. Understanding Nanomaterial-Liver Interactions to Facilitate the Development of Safer Nanoapplications. Adv. Mater. 2022, 34, 2106456.
  •  
  • 5. Hunsawong, T.; Sunintaboon, P.; Warit, S.; Thaisomboonsuk, B.; Jarman, R. G.; Yoon, I.-K.; Ubol, S.; Fernandez, S. Immunogenic Properties of a BCG Adjuvanted Chitosan Nanoparticle-Based Dengue Vaccine in Human Dendritic Cells. PLoS Negl. Trop. Dis. 2015, 9, e0003958.
  •  
  • 6. Kheirollahpour, M.; Mehrabi, M.; Dounighi, N. M.; Mohammadi, M.; Masoudi, A. Nanoparticles and Vaccine Development. Pharm. Nanotechnol. 2020, 8, 6-21.
  •  
  • 7. Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.-X.; Mitter, N.; Yu, C.; Middelberg, A. P. J. Nanoparticle Vaccines. Vaccine 2014, 32, 327-337.
  •  
  • 8. Maina, T. W.; Grego, E. A.; Boggiatto, P. M.; Sacco, R. E.; Narasimhan, B.; McGill, J. L. Applications of Nanovaccines for Disease Prevention in Cattle. Front. Bioeng. Biotechnol. 2020, 8.
  •  
  • 9. Silva, A. L.; Soema, P. C.; Slütter, B.; Ossendorp, F.; Jiskoot, W. PLGA Particulate Delivery Systems for Subunit Vaccines: Linking Particle Properties to Immunogenicity. Hum. Vaccin. Immunother. 2016, 12, 1056-1069.
  •  
  • 10. Fair, R. J.; Tor, Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Medicin. Chem. 2014, 6, PMC-S14459.
  •  
  • 11. Nur, A. R.; Yeit, H. T.; Ebrahim M. Current Approaches for the Exploration of Antimicrobial Activities of Nanoparticles. Sci. Technol. Adv. Mater. 2021, 22, 885-907.
  •  
  • 12. Mukheem, A.; Shahabuddin, S.; Akbar, N.; Miskon, A.; Muhamad Sarih, N.; Sudesh, K.; Ahmed Khan, N.; Saidur, R.; Sridewi, N. Boron Nitride Doped Polyhydroxyalkanoate/Chitosan Nanocom- posite for Antibacterial and Biological Applications. Nanomater. 2019, 9, 645.
  •  
  • 13. Rabiee, N.; Ahmadi, S.; Akhavan, O.; Luque, R. Silver and Gold Nanoparticles for Antimicrobial Purposes Against Multi-Drug Resistance Bacteria. Materials (Basel). 2022, 15, 1799.
  •  
  • 14. Kıvanç, M.; Barutca, B.; Koparal, A. T.; Göncü, Y.; Bostancı, S. H.; Ay, N. Effects of Hexagonal Boron Nitride Nanoparticles on Antimicrobial and Antibiofilm Activities, Cell Viability. Mater. Sci. Eng. C. 2018, 91, 115-124.
  •  
  • 15. Merlo, A.; Mokkapati, V. R. S. S.; Pandit, S.; Mijakovic, I. Boron Nitride Nanomaterials: Biocompatibility and Bio-Applications. Biomater. Sci. 2018, 6, 2298-2311.
  •  
  • 16. Semmah, A.; Heireche, H.; Bousahla, A. A.; Tounsi, A. Thermal Buckling Analysis of SWBNNT on Winkler Foundation by Non-Local FSDT. Adv. Nano Res. 2019, 7, 89.
  •  
  • 17. Joy, J.; George, E.; Haritha, P.; Thomas, S.; Anas, S. An Overview of Boron Nitride Based Polymer Nanocomposites. J. Polym. Sci. 2020, 58, 3115-3141.
  •  
  • 18. Zhang, H.; Chen, S.; Zhi, C.; Yamazaki, T.; Hanagata, N. Chitosan-Coated Boron Nitride Nanospheres Enhance Delivery of CpG Oligodeoxynucleotides and Induction of Cytokines. Int. J. Nanomedicine. 2013, 8, 1783.
  •  
  • 19. Zhang, H.; Feng, S.; Yan, T.; Zhi, C.; Gao, X.-D.; Hanagata, N. Polyethyleneimine-Functionalized Boron Nitride Nanospheres as Efficient Carriers for Enhancing the Immunostimulatory Effect of CpG Oligodeoxynucleotides. Int. J. Nanomedicine. 2015, 10, 5343.
  •  
  • 20. Fatullayeva, S.; Tagiyev, D.; Zeynalov, N. Samira M.; Elmira, A. Recent Advances of Chitosan-Based Polymers in Biomedical Applications and Environmental Protection. J. Polym. Res. 2022, 29, 259.
  •  
  • 21. Jabbal-Gill, I.; Watts, P.; Smith, A. Chitosan-Based Delivery Systems for Mucosal Vaccines. Expert Opin. Drug Deliv. 2012, 9, 1051-1067.
  •  
  • 22. Perinelli, D. R.; Fagioli, L.; Campana, R.; Lam, J. K. W.; Baffone, W.; Palmieri, G. F.; Casettari, L.; Bonacucina, G. Chitosan-Based Nanosystems and Their Exploited Antimicrobial Activity. Eur. J. Pharm. Sci. 2018, 117, 8-20.
  •  
  • 23. Sarhan, W. A.; Azzazy, H. M. E. High Concentration Honey Chitosan Electrospun Nanofibers: Biocompatibility and Anti- bacterial Effects. Carbohydr. Polym. 2015, 122, 135-143.
  •  
  • 24. Ibrahim, N. A.; El-Zairy, E. M.; Eid, B. M.; Emam, E.; Barkat, S. R. A New Approach for Imparting Durable Multifunctional Properties to Linen-Containing Fabrics. Carbohydr. Polym. 2017, 157, 1085-1093.
  •  
  • 25. Feyzioglu, G. C.; Tornuk, F. Development of Chitosan Nano- particles Loaded with Summer Savory Essential Oil for Antimicrobial and Antioxidant Delivery Applications. LWT Food Sci. Technol. 2016, 70, 104-110.
  •  
  • 26. Liu, Y.; Yang, G.; Zou, D.; Hui, Y.; Nigam, K.; Middelberg, A. P. J.; Zhao, C.-X. Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Ind. Eng. Chem. Res. 2020, 59, 4134-4149.
  •  
  • 27. Salatin, S.; Barar, J.; Barzegar-Jalali, M.; Adibkia, K.; Kiafar, F.; Jelvehgari, M. Development of a Nanoprecipitation Method for The Entrapment of a Very Water-Soluble Drug into Eudragit RL Nanoparticles. Res. Pharm. Sci. 2017, 12, 1-14.
  •  
  • 28. Yamamoto, H.; Kuno, Y.; Sugimoto, S.; Takeuchi, H.; Kawashima, Y. Surface-Modified PLGA Nanosphere with Chitosan Improved Pulmonary Delivery of Calcitonin By Mucoadhesion and Opening of the Intercellular Tight Junctions. J. Control. Release. 2005, 102, 373-381.
  •  
  • 29. Meewan, J.; Somani, S.; Almowalad, J.; Laskar, P.; Mullin, M.; MacKenzie, G.; Khadke, S.; Perrie, Y.; Dufès, C. Preparation of Zein-Based Nanoparticles: Nanoprecipitation versus Microfluidic-Assisted Manufacture, Effects of PEGylation on Nanoparticle Characteristics and Cellular Uptake by Melanoma Cells. Int J Nanomedicine. 2022, 17, 2809-2822.
  •  
  • 30. Mourdikoudis, S.; Pallares, R. M.; Thanh, N. T. K. Characterization Techniques for Nanoparticles: Comparison and Complementarity Upon Studying Nanoparticle Properties. Nanoscale. 2018, 10, 12871-12934.
  •  
  • 31. Barnabas, M. J.; Parambadath, S.; Nagappan, S.; Chung, I.; Ha, C.-S. Silver (I)-Schiff-Base Complex Intercalated Layered Double Hydroxide with Antimicrobial Activity. Adv. Nano Res. 2021, 10, 373-383.
  •  
  • 32. Sevinç Özakar, R.; Özakar, E. Different Biopolymers" Effects on the Evaluation and Characterization of Floating Tablets Prepared by Lyophilization Technique to Improve the Quality Control Parameters. Polym. Korea 2022, 46, 145-158.
  •  
  • 33. Rose, F.; Wern, J. E.; Gavins, F.; Andersen, P.; Follmann, F.; Foged, C. A Strong Adjuvant Based on Glycol-Chitosan-Coated Lipid-Polymer Hybrid Nanoparticles Potentiates Mucosal Immune Responses Against the Recombinant Chlamydia Trachomatis Fusion Antigen CTH522. J. Control. Release. 2018, 271, 88-97.
  •  
  • 34. Öner, M.; Kızıl, G.; Keskin, G.; Pochat-Bohatier, C.; Bechelany, M. The Effect of Boron Nitride on the Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Nanomaterials. 2018, 11, 940.
  •  
  • 35. Kayani, Z. N.; Bashir, Z.; Mohsin, M.; Riaz, S.; Naseem, S. Sol-Gel Synthesized Boron Nitride (BN) Thin Films for Antibacterial and Magnetic Applications. Optik (Stuttg). 2021, 243, 167502.
  •  
  • 36. Pandit, S.; Gaska, K.; Mokkapati, V. R. S. S.; Forsberg, S.; Svensson, M.; Kádár, R.; Mijakovic, I. Antibacterial Effect of Boron Nitride Flakes with Controlled Orientation in Polymer Composites. RSC Adv. 2019, 9, 33454-33459.
  •  
  • 37. Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater. 2015, 2015, 720654.
  •  
  • 38. Li, Z.; Ma, J.; Ruan, J.; Zhuang, X. Using Positively Charged Magnetic Nanoparticles to Capture Bacteria at Ultralow Concentration. Nanoscale Res. Lett. 2019, 14, 195.
  •  
  • 39. Mehrabi, M.; Montazeri, H.; Mohamadpour Dounighi, N.; Rashti, A.; Vakili-Ghartavol, R. Chitosan-based Nanoparticles in Mucosal Vaccine Delivery. Arch. Razi Inst. 2018, 73, 165-176.
  •  
  • 40. Shim, S.; Yoo, H. S. The Application of Mucoadhesive Chitosan Nanoparticles in Nasal Drug Delivery. Mar. Drugs. 2020, 18, 605.
  •  
  • 41. Lee, A.; Tsai, H.-Y.; Yates, M. Z. Steric Stabilization of Thermally Responsive N-Isopropylacrylamide Particles by Poly(vinyl alcohol). Langmuir. 2010, 26, 18055-18060.
  •  
  • 42. Ali, N.; Teixeira, J. A.; Addali, A. A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. J. Nanomater. 2018, 2018, 6978130.
  •  
  • 43. Honary, S.; Zahir, F. Effect of Zeta Potential on The Properties of Nano-Drug Delivery Systems-A Review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265-273.
  •  
  • 44. Koca, M.; Özakar, R. S.; Özakar, E.; Sade, R.; Pirimoğlu, B.; Özek, N. Ş.; Aysin, F. Preparation and Characterization of Nano- suspensions of Triiodoaniline Derivative New Contrast Agent, and Investigation into Its Cytotoxicity and Contrast Properties. Iran. J. Pharm. Res. 2022, 21, e123824.
  •  
  • 45. Singare, D. S.; Marella, S.; Gowthamrajan, K.; Kulkarni, G. T.; Vooturi, R.; Rao, P. S. Optimization of Formulation and Process Variable of Nanosuspension: An Industrial Perspective. Int. J. Pharm. 2010, 402, 213-220.
  •  
  • 46. Ali, H. S. M.; York, P.; Blagden, N. Preparation of Hydrocortisone Nanosuspension Through A Bottom-Up Nanoprecipitation Technique Using Microfluidic Reactors. Int. J. Pharm. 2009, 375, 107-113.
  •  
  • 47. Patravale, V. B., Date, A. A.; Kulkarni, R. M. Nanosuspensions: A Promising Drug Delivery Strategy. J. Pharm. Pharmacol. 2004, 56, 827-840.
  •  
  • 48. Kisku, S. K.; Swain, S. K. Synthesis and Characterization of Chitosan/Boron Nitride Composites. J. Am. Ceram. Soc. 2012, 95, 2753-2757.
  •  
  • 49. Samuels, R. J. Solid State Characterization of the Structure of Chitosan Films. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1081-1105.
  •  
  • 50. Salehirad, M.; Nikje, M. M. A. Synthesis and Characterization of Exfoliated Polystyrene Grafted Hexagonal Boron Nitride Nano- sheets and Their Potential Application in Heat Transfer Nanofluids. Iran. Polym. J. 2017, 26, 467-480.
  •  
  • 51. Shahabuddin, S.; Khanam, R.; Khalid, M.; Sarih, N. M.; Ching, J. J.; Mohamad, S.; Saidur, R. Synthesis of 2D Boron Nitride Doped Polyaniline Hybrid Nanocomposites for Photocatalytic Degradation of Carcinogenic Dyes from Aqueous Solution. Arab. J. Chem. 2018, 11, 1000-1016.
  •  
  • 52. Ikram, M.; Jahan, I.; Haider, A.; Hassan, J.; Ul-Hamid, A.; Imran, M.; Haider, J.; Shahzadi, A.; Shahbaz, A.; Ali, S. Bactericidal Behavior of Chemically Exfoliated Boron Nitride Nanosheets Doped with Zirconium. Appl. Nanosci. 2020, 10, 2339-2349.
  •  
  • 53. Mateti, S.; Wong, C. S.; Liu, Z.; Yang, W.; Li, Y.; Li, L. H.; Chen, Y. Biocompatibility of Boron Nitride Nanosheets. Nano Res. 2018, 11, 334-342.
  •  
  • 54. Horváth, L.; Magrez, A.; Golberg, D.; Zhi, C.; Bando, Y.; Smajda, R.; Horváth, E.; Forró, L.; Schwaller, B. In Vitro Investigation of the Cellular Toxicity of Boron Nitride Nanotubes. ACS Nano. 2011, 5, 3800-3810.
  •  
  • 55. Maria Nithya, J. S.; Pandurangan, A.; Aqueous Dispersion of Polymer Coated Boron Nitride Nanotubes and Their Antibacterial and Cytotoxicity Studies. RSC Adv. 2014, 4, 32031-32046.
  •  
  • 56. Firestein, K. L.; Leybo; D. V.; Steinman, A. E.; Kovalskii, A. M.; Matveev, A. T.; Manakhov, A. M.; Sukhorukova, I. V.; Slukin, P. V.; Fursova, N. K.; Ignatov, S. G. BN/Ag Hybrid Nanomaterials with Petal-Like Surfaces as Catalysts and Antibacterial Agents. Beilstein J. Nanotechnol. 2018, 9, 250.
  •  
  • 57. Nasr, M.; Soussan, L.; Viter, R.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. High Photodegradation and Antibacterial Activity of BN-Ag/TiO2 Composite Nanofibers Under Visible Light. New J. Chem. 2018, 42, 1250-1259.
  •  
  • 58. Gottenbos, B.; Grijpma, D. W.; van der Mei, H. C.; Feijen, J.; Busscher, H. J. Antimicrobial Effects of Positively Charged Surfaces on Adhering Gram-Positive and Gram-Negative Bacteria. J. Antimicrob. Chemother. 2001, 48, 7-13.
  •  
  • 59. Fang, W.; Han, C.; Zhang, H.; Wei, W.; Liu, R.; Shen, Y. Preparation of Amino-Functionalized Magnetic Nanoparticles for Enhancement of Bacterial Capture Efficiency. RSC Adv. 2016, 6, 67875-67882.
  •  
  • 60. Fedtke, I.; Götz, F.; Peschel, A. Bacterial Evasion of Innate Host Defenses-The Staphylococcus aureus Lesson. Int. J. Med. Microbiol. 2004, 294, 189-194.
  •  
  • 61. Tang, Y.; Xiao, C.; Ding, J.; Hu, K.; Zheng, K.; Tian, X. Synergetic Enhancement of Thermal Conductivity in the Silica-Coated Boron Nitride (SiO2@BN)/Polymethyl Methacrylate (PMMA) Composites. Colloid Polym. Sci. 2020, 298, 385-393.
  •  
  • 62. Liu, B.; Qi, W.; Tian, L.; Li, Z.; Miao, G.; An, W.; Liu, D.; Lin, J.; Zhang, X.; Wu, W. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice. Nanoscale Res. Lett. 2015, 10, 478.
  •  
  • 63. Mukheem, A.; Muthoosamy, K.; Manickam, S.; Sudesh, K.; Shahabuddin, S.; Saidur, R.; Akbar, N.; Sridewi, N. Fabrication and Characterization of an Electrospun PHA/Graphene Silver Nanocomposite Scaffold for Antibacterial Applications. Materials (Basel). 2018, 11, 1673.
  •  
  • 64. You, C.; Han, C.; Wang, X.; Zheng, Y.; Li, Q.; Hu, X.; Sun, H. The Progress of Silver Nanoparticles in the Antibacterial Mechanism, Clinical Application and Cytotoxicity. Mol. Biol. Rep. 2012, 39, 9193-9201.
  •  
  • 65. Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int J. Mol. Sci. 2020,21, 2375.
  •  
  • 66. Leino, V.; Airaksinen, R.; Viluksela, M.; Vähäkangas, K. Toxicity of Colloidal Silver Products and Their Marketing Claims in Finland. Toxicol. Rep. 2020, 8, 106-113.
  •  
  • 67. Białek, M.; Czauderna, M.; Krajewska, K.; Przybylski, W. Selected Physiological Effects of Boron Compounds for Animals and Humans. A review. J. Anim. Feed Sci. 2019, 28, 307-320.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(6): 709-721

    Published online Nov 15, 2022

  • 10.7317/pk.2022.46.6.709
  • Received on Jun 30, 2022
  • Revised on Sep 14, 2022
  • Accepted on Sep 18, 2022

Correspondence to

  • Emrah Özakar
  • Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Türkiye

  • E-mail: emrahozakar@atauni.edu.tr