Article
  • Selective Fluorescence Staining of Microplastic in Water Utilizing Nile Red/surfactant Combination
  • Se Bin Oh, Doo Hong Park, and Sung Chul Hong

  • Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea

  • Nile red/계면활성제 조합을 이용한 미세플라스틱의 수계 내 선택적 형광 염색
  • 오세빈 · 박두홍 · 홍성철

  • 세종대학교 나노신소재공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Frias, J.; Nash, R. Microplastics: Finding a Consensus on the Definition. Mar. Pollut. Bull. 2019,138, 145-147.
  •  
  • 2. Andrady, A. L. The Plastic in Microplastics: A review. Mar. Pollut. Bull. 2017,119, 12-22.
  •  
  • 3. Wright, S. L.; Kelly, F. J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017,51, 6634-6647.
  •  
  • 4. Li, J.; Liu, H.; Paul Chen, J. Microplastics in Freshwater Systems: A Review on Occurrence, Environmental Effects, and Methods for Microplastics Detection. Water Res. 2018, 137, 362-374.
  •  
  • 5. Andrady, A. L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596-1605.
  •  
  • 6. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment. In Reports and Studies GESAMP No. 90; Kershaw, P. J. Ed.; International Maritime Organization: London, 2015.
  •  
  • 7. Hartmann, N. B.; Huffer, T.; Thompson, R. C.; Hassellov, M.; Verschoor, A.; Daugaard, A. E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; Herrling, M. P.; Hess, M. C.; Ivleva, N. P.; Lusher, A. L.; Wagner, M. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039-1047.
  •  
  • 8. Erni-Cassola, G.; Gibson, M. I.; Thompson, R. C.; Christie-Oleza, J. A. Lost, But Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples. Environ. Sci. Technol. 2017, 51, 13641-13648.
  •  
  • 9. Ziajahromi, S.; Kumar, A.; Neale, P. A.; Leusch, F. D. L. Environmentally Relevant Concentrations of Polyethylene Microplastics Negatively Impact the Survival, Growth and Emergence of Sediment-dwelling Invertebrates. Environ. Pollut. 2018, 236, 425-431.
  •  
  • 10. Raju, S.; Carbery, M.; Kuttykattil, A.; Senathirajah, K.; Subashchandrabose, S. R.; Evans, G.; Thavamani, P. Transport and Fate of Microplastics in Wastewater Treatment Plants: Implications to Environmental Health. Rev. Environ. Sci. Biotechnol. 2018, 17, 637-653.
  •  
  • 11. Cui, R.; Kim, S. W.; An, Y. J. Polystyrene Nanoplastics Inhibit Reproduction and Induce Abnormal Embryonic Development in the Freshwater Crustacean. Daphnia galeata. Sci. Rep. 2017, 7, 12095.
  •  
  • 12. Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salanki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A. A.; Geissen, V. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685-2691.
  •  
  • 13. Primpke, S.; Christiansen, S. H.; Cowger, W.; De Frond, H.; Deshpande, A.; Fischer, M.; Holland, E. B.; Meyns, M.; O'Donnell, B. A.; Ossmann, B. E.; Pittroff, M.; Sarau, G.; Scholz-Bottcher, B. M.; Wiggin, K. J. Critical Assessment of Analytical Methods for the Harmonized and Cost-efficient Analysis of Microplastics. Appl. Spectrosc. 2020, 74, 1012-1047.
  •  
  • 14. Zarfl, C. Promising Techniques and Open Challenges for Microplastic Identification and Quantification in Environmental Matrices. Anal. Bioanal. Chem. 2019, 411, 3743-3756.
  •  
  • 15. Prata, J. C.; da Costa, J. P.; Duarte, A. C.; Rocha-Santos, T. Methods for Sampling and Detection of Microplastics in Water and Sediment: A Critical Review. Trends Analyt. Chem. 2019,110, 150-159.
  •  
  • 16. Silva, A. B.; Bastos, A. S.; Justino, C. I. L.; da Costa, J. P.; Duarte, A. C.; Rocha-Santos, T. A. P. Microplastics in the Environment: Challenges in Analytical Chemistry - A Review. Anal. Chim. Acta 2018, 1017, 1-19.
  •  
  • 17. Shim, W. J.; Hong, S. H.; Eo, S. E. Identification Methods in Microplastic Analysis: A Review. Anal. Methods 2017, 9, 1384-1391.
  •  
  • 18. Ziajahromi, S.; Neale, P. A.; Rintoul, L.; Leusch, F. D. Wastewater Treatment Plants as a Pathway for Microplastics: Development of a New Approach to Sample Wastewater-based Microplastics. Water Res. 2017, 112, 93-99.
  •  
  • 19. Löder, M. G. J.; Gerdts, G. Marine Anthropogenic Litter; Bergmann, M.; Gutow, L.; Klages, M., Eds., Springer: Heidelberg, 2015; pp. 201-227.
  •  
  • 20. Lenz, R.; Enders, K.; Stedmon, C. A.; Mackenzie, D. M. A.; Nielsen, T. G. A Critical Assessment of Visual Identification of Marine Microplastic Using Raman Spectroscopy for Analysis Improvement. Mar. Pollut. Bull. 2015, 100, 82-91.
  •  
  • 21. Shruti, V. C.; Perez-Guevara, F.; Roy, P. D.; Kutralam-Muniasamy, G. Analyzing Microplastics with Nile Red: Emerging Trends, Challenges, and Prospects. J. Hazard. Mater. 2022, 423, 127171.
  •  
  • 22. Liu, S.; Shang, E.; Liu, J.; Wang, Y.; Bolan, N.; Kirkham, M. B.; Li, Y. What Have we Known so Far for Fluorescence Staining and Quantification of Microplastics: A Tutorial Review. Front. Environ. Sci. Eng. 2022, 16, 8.
  •  
  • 23. Capolungo, C.; Genovese, D.; Montalti, M.; Rampazzo, E.; Zaccheroni, N.; Prodi, L. Photoluminescence-based Techniques for the Detection of Micro- and Nanoplastics. Chem. Eur. J. 2021, 27, 17529-17541.
  •  
  • 24. Stanton, T.; Johnson, M.; Nathanail, P.; Gomes, R. L.; Needham, T.; Burson, A. Exploring the Efficacy of Nile Red in Microplastic Quantification: A Costaining Approach. Environ. Sci. Technol. Lett. 2019, 6, 606-611.
  •  
  • 25. Hengstmann, E.; Fischer, E. K. Nile Red Staining in Microplastic Analysis-proposal for a Reliable and fast Identification Approach for Large Microplastics. Environ. Monit. Assess. 2019, 191, 612.
  •  
  • 26. Maes, T.; Jessop, R.; Wellner, N.; Haupt, K.; Mayes, A. G. A Rapid-screening Approach to Detect and Quantify Microplastics Based on Fluorescent Tagging with Nile Red. Sci. Rep. 2017, 7, 44501.
  •  
  • 27. Shim, W. J.; Song, Y. K.; Hong, S. H.; Jang, M. Identification and Quantification of Microplastics Using Nile Red Staining. Mar. Pollut. Bull. 2016, 113, 469-476.
  •  
  • 28. Karakolis, E. G.; Nguyen, B.; You, J. B.; Rochman, C. M.; Sinton, D. Fluorescent Dyes for Visualizing Microplastic Particles and Fibers in Laboratory-based Studies. Environ. Sci. Technol. Lett. 2019, 6, 334-340.
  •  
  • 29. Lv, L.; Qu, J.; Yu, Z.; Chen, D.; Zhou, C.; Hong, P.; Sun, S.; Li, C. A Simple Method for Detecting and Quantifying Microplastics Utilizing Fluorescent Dyes - Safranine T, Fluorescein Isophosphate, Nile Red Based on Thermal Expansion and Contraction Property. Environ. Pollut. 2019, 255, 113283.
  •  
  • 30. Tamminga, M.; Hengstmann, E.; Fischer, E. K. Nile Red Staining as a Subsidiary Method for Microplastic Quantification: A Comparison of Three Solvents and Factors Influencing Application Reliability. SDRP J. Earth Sci. Environ. Studies 2017, 2, 165-172.
  •  
  • 31. Wiggin, K. J.; Holland, E. B. Validation and Application of Cost and Time Effective Methods for the Detection of 3-500 μm Sized Microplastics in the Urban Marine and Estuarine Environments Surrounding Long Beach, California. Mar. Pollut. Bull. 2019, 143, 152-162.
  •  
  • 32. Fischer, E. K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic Pollution in Lakes and Lake Shoreline Sediments - A Case Study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 2016, 213, 648-657.
  •  
  • 33. Tosic, T. N.; Vruggink, M.; Vesman, A. Microplastics Quantification in Surface Waters of the Barents, Kara and White Seas. Mar. Pollut. Bull. 2020, 161, 111745.
  •  
  • 34. Tong, H.; Jiang, Q.; Zhong, X.; Hu, X. Rhodamine B Dye Staining for Visualizing Microplastics in Laboratory-based Studies. Environ. Sci. Pollut. Res. 2021, 28, 4209-4215.
  •  
  • 35. Hidalgo-Ruz, V.; Gutow, L.; Thompson, R. C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060-3075.
  •  
  • 36. Asamoah, B. O.; Salmi, P.; Raty, J.; Ryymin, K.; Talvitie, J.; Karjalainen, A. K.; Kukkonen, J. V. K.; Roussey, M.; Peiponen, K. E. Optical Monitoring of Microplastics Filtrated from Wastewater Sludge and Suspended in Ethanol. Polymers 2021, 13, 871.
  •  
  • 37. Colson, B. C.; Michel, A. P. M. Flow-through Quantification of Microplastics Using Impedance Spectroscopy. ACS Sens. 2021, 6, 238-244.
  •  
  • 38. Prata, J. C.; Reis, V.; Matos, J. T. V.; da Costa, J. P.; Duarte, A. C.; Rocha-Santos, T. A New Approach for Routine Quantification of Microplastics Using Nile Red and Automated Software (MP-VAT). Sci. Total Environ. 2019, 690, 1277-1283.
  •  
  • 39. Tehrani-Bagha, A. R.; Holmberg, K. Solubilization of Hydrophobic Dyes in Surfactant Solutions. Materials 2013, 6, 580-608.
  •  
  • 40. Weiss, J.; Coupland, J. N.; McClements, D. J. Solubilization of Hydrocarbon Emulsion Droplets Suspended in Nonionic Surfactant Micelle Solutions. J. Phys. Chem. 1996, 100, 1066-1071.
  •  
  • 41. Smith McWilliams, A. D.; Ergülen, S.; Ogle, M. M.; de los Reyes, C. A.; Pasquali, M.; Martí, A. A. Fluorescent Surfactants from Common Dyes – Rhodamine B and Eosin Y. Pure Appl. Chem. 2019, 92, 265-274.
  •  
  • 42. Weiss, J.; McClements, D. J. Mass Transport Phenomena in Oil-in-water Emulsions Containing Surfactant Micelles:  Solubilization. Langmuir 2000, 16, 5879-5883.
  •  
  • 43. Winnik, F. M.; Regismond, S. T. J. C.; Physicochemical, S. A.; Aspects, E. Fluorescence Methods in the Study of the Interactions of Surfactants with Polymers. Colloids Surf., A 1996, 118, 1-39.
  •  
  • 44. Park, D. H.; Oh, S. B.; Hong, S. C. In Situ Fluorescent Illumination of Microplastics in Water Utilizing a Combination of Dye/Surfactant and Quenching Techniques. Polymers 2022, 14, 3084.
  •  
  • 45. Koreiviene, J. Microalgae Lipid Staining with Fluorescent BODIPY Dye. Methods Mol. Biol. 2020, 1980, 47-53.
  •  
  • 46. Yadigarli, A.; Song, Q.; Druzhinin, S. I.; Schonherr, H. Probing of Local Polarity in Poly(methyl methacrylate) with the Charge Transfer Transition in Nile red. Beilstein J. Org. Chem. 2019, 15, 2552-2562.
  •  
  • 47. Gagne, F.; Auclair, J.; Quinn, B. Detection of Polystyrene Nanoplastics in Biological Samples Based on the Solvatochromic Properties of Nile Red: Application in Hydra attenuata Exposed to Nanoplastics. Environ. Sci. Pollut. Res. 2019, 26, 33524-33531.
  •  
  • 48. Rumin, J.; Bonnefond, H.; Saint-Jean, B.; Rouxel, C.; Sciandra, A.; Bernard, O.; Cadoret, J. P.; Bougaran, G. The Use of Fluorescent Nile Red and BODIPY for Lipid Measurement in Microalgae. Biotechnol. Biofuels 2015, 8, 42.
  •  
  • 49. Tae-soo Choi; Yoshio Shimizu; Hirofusa Shirai; Hamada, K. Disperse Dyeing of Nylon 6 Fiber Using Gemini Surfactants Containing Ammonium Cations as Auxiliaries. Dyes Pigm. 2001, 48, 217-226.
  •  
  • 50. Zhegalova, N. G.; He, S.; Zhou, H.; Kim, D. M.; Berezin, M. Y. Minimization of Self-quenching Fluorescence on Dyes Conjugated to Biomolecules with Multiple Labeling Sites via Asymmetrically Charged NIR Fluorophores. Contrast Media Mol. Imaging 2014, 9, 355-362.
  •  
  • 51. Lakowicz, J. R.; Malicka, J.; D’Auria, S.; Gryczynski, I. Release of the Self-quenching of Fluorescence Near Silver Metallic Surfaces. Anal. Biochem. 2003, 320, 13-20.
  •  
  • 52. Simon, M.; van Alst, N.; Vollertsen, J. Quantification of Microplastic Mass and Removal Rates at Wastewater Treatment Plants Applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FTIR) imaging. Water Res. 2018, 142, 1-9.
  •  
  • 53. Anger, P. M.; von der Esch, E.; Baumann, T.; Elsner, M.; Niessner, R.; Ivleva, N. P. Raman Microspectroscopy as a Tool for Microplastic Particle Analysis. Trends Analyt. Chem. 2018,109, 214-226.
  •  
  • 54. Yang, J.; Zhou, G.; Zhang, G.; Si, Z.; Hu, J. Determination of Some Cephalosporins in Pharmaceutical Formulations by a Fluorescence Quenching Method. Anal. Commun. 1996, 33, 167-169.
  •  
  • 55. Thipperudrappa, J.; Biradar, D. S.; Lagare, M. T.; Hanagodimath, S. M.; Inamdar, S. R.; Kadadevaramath, J. S. Fluorescence Quenching of BPBD by Aniline in Benzene-acetonitrile Mixtures. J. Photochem. Photobiol., A 2006, 177, 89-93.
  •  
  • 56. Geethanjali, H. S.; Nagaraja, D.; Melavanki, R. M.; Kusanur, R. A. Fluorescence Quenching of Boronic Acid Derivatives by Aniline in Alcohols – A Negative Deviation from Stern-Volmer Equation. J. Lumin. 2015, 167, 216-221.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(6): 827-836

    Published online Nov 25, 2022

  • 10.7317/pk.2022.46.6.827
  • Received on Aug 9, 2022
  • Revised on Sep 6, 2022
  • Accepted on Sep 27, 2022

Correspondence to

  • Sung Chul Hong
  • Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea

  • E-mail: sunghong@sejong.ac.kr