Article
  • Improving the Properties of PPS/PSU Blends Using High Intensity Ultrasound
  • Young-Dae Kim and Sangmook Lee*,†

  • Central Technology R&D Institute, Hyundai Oilbank Co., Ltd, 17-10 Mabuk-ro 240beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 16891, Korea
    *Division of Chemical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Korea

  • 고강도 초음파를 이용한 PPS/PSU 블렌드의 물성개선
  • 김영대 · 이상묵*,†

  • 현대오일뱅크, *단국대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Liu, S.; Tu, L.; Liu, C.; Tong, L.; Bai, Z.; Lin, G.; Jia, K.; Liu, X. Interfacial Crosslinking enabled Super-engineering Polymer-based Composites with Ultra-stable Dielectric Properties beyond 350 oC. J. Alloys Compd. 2022, 891, 161952.
  •  
  • 2. Park, S.-A.; Jeon, H.; Kim, H.; Shin, S. H.; Choy, S.; Hwang, D. S.; Koo, J. M.; Jegal, J.; Hwang, S. Y.; Park, J.; Oh, D. X. Suystainable and Recyclable Super Engineering Thermoplastic from Biorenewable Monomer. Nat. Commun. 2019, 10, 2601.
  •  
  • 3. Borodulin, A. S.; Kalinnikov, A. N. Super Engineering Polyesters: Synthesis and Performance Characteristics. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 709, 022038.
  •  
  • 4. Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Polyphenylene sulfide (PPS): State of the Art and Applications. Rev Chem. Eng. 2013, 29, 471-489.
  •  
  • 5. Chen, G.; Mohanty, A. K.; Misra, M. Progress in Research and Applications of Polyphenylene Sulfide Blends and Composites with Carbons. Composite Part B 2021, 209, 108553.
  •  
  • 6. Kerres, J.; Ullrich, A.; Hein, M. Preparation and Characterization of Novel Basic Polysulfone Polymers. J. Polym. Sci. PartA-1: Polym. Chem. 2001, 39, 2874-2888.
  •  
  • 7. Ionita, M.; Pandele, A. M.; Crica, L.; Pilan, L. Improving the Thermal and Mechanical Properties of Polysulfone by Incorpo- ration of Graphene Oxide. Composite Part B 2014, 59, 133-139.
  •  
  • 8. Paul, D. R.; Newman, S. Polymer Blends Volume 1; Academic Press: New York, 2012.
  •  
  • 9. Utracki, L. A. Commercial Polymer Blends; Springer; New York, 2013.
  •  
  • 10. Lipatov, Y. S.; Nesterov, A. E.; Ignatova, T. D.; Nesterov, D. A. Effect of Polymer-Filler Surface Interactions on the Phase Separation in Polymer Blends. Polymer 2002, 43, 875-880.
  •  
  • 11. Huang, C.; Cruz, M. O.; Swift, B. W. Phase Separation of Ternary Mixtures: Symmetric Polymer Blends. Macromolecules 1995, 28, 7996-8005.
  •  
  • 12. Alkhodairi, H.; Russell, S. T.; Pribyl, J.; Benicewicz, B. C.; Kumar, S. K. Compatibilizing Immiscible Polymer Blends with Sparsely Grafted Nanoparticles. Macromolecules 2020, 53, 10330-10338.
  •  
  • 13. Cartier, H.; Hu, G.-H. A Novel Reactive Extrusion Process for Compatilizing Immiscilbe Polymer Blends. Polymer 2001, 42, 8807-8816.
  •  
  • 14. Spontak, R. J.; Ryan, J. J. Chapter 3 - Polymer Blend Compatibilization by the addition of Block Copolymers. In Compatibilization of Polymer Blends; Ajitha, A. R., Thomas, S., Eds.; Elsevier: Amsterdam, 2020; pp 57-102.
  •  
  • 15. Ding, Y.; Feng, W.; Huang, D.; Lu, Bo; Wang, P.; Wang, G.; Ji, J. Compatibilization of Immiscible PLA-based Biodegradable Polymer Blends using Amphiphilic Di-block Copolymers. Eur. Polym. J. 2019, 118, 45-52.
  •  
  • 16. Sharma, S.; Basu, B. Insights into In Situ Compatibilization of Polydimethylsiloxane-Modified Thermoplastic Polyurethanes by Dynamic Crosslinking: Relating Experiments to Predictive Models. ACS Appl. Polym. Mater. 2022, 4, 3752-3769.
  •  
  • 17. Wang, R.; Sun, X.; Chen, L.; Liang, W. Morphological and Mechanical Properties of Biodegradable Poly(glycolic acid)/Poly(butylene adipate-co-terephthalate) Blends with In Situ Compatibilization. RSC Adv. 2021, 11, 1241-1249.
  •  
  • 18. Gallego-Juarez, J. A.; Graff, K. F. Power Ultrasonics: Applications of High-Intensity Ultrasound; Elsevier: New York, 2015.
  •  
  • 19. Abramov, O. V. High-Intensity Ultrasonics; CRC Press: London, 2020.
  •  
  • 20. Burch, H. E.; Scott, C. E. Effect of Viscosity Ratio on Structure Evolution in Miscible Polymer Blends. Polymer 2001, 42, 7313-7325.
  •  
  • 21. Hammani, S.; Moulai-Mostefa, N.; Samyn, P.; Bechelany, M.; Dufresne, A.; Barhoum, A. Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. Materials 2020, 13, 926.
  •  
  • 22. Cox, W. P.; Merz, E. H. Correlation of Dynamic and Steady Flow Viscosities. J. Polym. Sci. 1958, 28, 619-622.
  •  
  • 23. Lee, S.; Lee, J. W. 8. Ultrasound in Polymer Blends. In Characterization of Polymer Blends; Thomas, S., Grohens, Y; Jyotishkumar, P., Eds.; Wiley-VCH: Weinheim, 2015; pp 269-298.
  •  
  • 24. Jung, W. C.; Lee, S. Effect of High Intensity Ultrasound on the Properties of Recycled ABS/Recycled PETG Blends. Polym. Korea 2022, 46, 56-61.
  •  
  • 25. Yoo, J. H.; Shanmugam, S.; Thapa, P.; Lee, E.-S.; Balakrishnan, P.; Baskaran, R.; Yoon, S.-K.; Choi, H.-G.; Yong, C. S.; Yoo, B. K.; Han, K. Novel Self-nanoemulsifying Drug Delivery System for Enhanced Solubility and Dissolution of Lutein. Arch. Pharm. Res. 2010, 33, 417-426.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(1): 42-48

    Published online Jan 25, 2023

  • 10.7317/pk.2023.47.1.42
  • Received on Aug 24, 2022
  • Revised on Oct 24, 2022
  • Accepted on Nov 14, 2022

Correspondence to

  • Sangmook Lee
  • Division of Chemical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Korea

  • E-mail: s_mlee@naver.com