Article
  • Wound Healing Effect of Gallic Acid-g-Chitosan Gel
  • Jin Kim*, **, Jae-Young Je***,† , and Chang-Moon Lee****, *****, ******,†

  • *Department of Oral and Maxillofacial Surgery, College of Dentistry, Chosun University, Gwangju 61452, Korea
    **Institute of Dental Science, Chosun University, Gwangju 61452, Korea
    ***Division of Smart Healthcare, Pukyong National University, Busan 48513, Korea
    ****School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
    *****Department of Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
    ******Research Center of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea

  • Gallic Acid가 결합된 키토산 젤의 창상 치유 효과
  • 김 진*, ** ·제재영***,† ·이창문****, *****, ******,†

  • *조선대학교 구강악안면외과학교실, **조선대학교 치의학연구원, ***부경대학교 스마트헬스케어학부,
    ****전남대학교 헬스케어메디컬공학부, *****전남대학교 의공학과, ******전남대학교 헬스케어의공학연구소

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Shin, H. H.; Bhang S. H. Tissue Engineering Technology for Wound Healing. KCI News 2015, 18, 13-20.
  •  
  • 2. Lei, V.; Petty, A. J.; Atwater, A. R.; Wolfe, S. A.; MacLeod, A. S. Skin Viral Infections: Host Antiviral Innate Immunity and Viral Immune Evasion. Front. Immunol. 2020, 11, 593901.
  •  
  • 3. Dhivya, S.; Padama, V. V.; Santhini, E. Wound Dressings - a Review. Biomedicine 2015, 5, 24-28.
  •  
  • 4. Kibungu, C.; Kondiah, P. P. D.; Kumar, P.; Choonara, Y. E. This Review Recent Advances in Chitosan and Alginate-based Hydrogels for Wound Healing Application. Front. Mater. 2021, 8, 681960.
  •  
  • 5. Negut, I.; Dorcioman, G.; Grumezescu, V. Scaffolds for Wound Healing Applications. Polymers 2020, 12, 2010.
  •  
  • 6. Devi V. K., A.; Shyam, R.; Palaniappan, A.; Jaiswal, A. K.; Oh, T. H.; Nathanael, A. J. Self-healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Polymers 2021, 13, 3782.
  •  
  • 7. Shahin, H.; Aldo R. B. Antibacterial Biohybrid Nanofibers for Wound Dressings. Acta Biomater. 2020, 107, 25-49.
  •  
  • 8. Poshina, D.; Otsuka, I. Electrospun Polysaccharidic Textiles for Biomedical Applications. Textiles 2021, 1, 152-169.
  •  
  • 9. Kim, J.; Lee, K. Y. Evaluation of Korean Pine Byproduct Loaded Poly(vinyl alcohol)/pectin Hydrogel for Wound Healing. Polym. Korea 2015, 39, 543-549.
  •  
  • 10. Hu, Q.; Luo, Y. Polyphenol-chitosan Conjugates: Synthesis, Characterization, and Applications. Carbohydr. Polym. 2016, 151, 624-639.
  •  
  • 11. Khan, F.; Bamunuarachchi, N. I.; Tabassum, N.; Kim, Y. M. Caffeic Acid and Its Derivatives: Antimicrobial Drugs Toward Microbial Pathogen. J. Agric. Food Chem. 2021, 69, 2979-3004.
  •  
  • 12. Qin, Y.; Li, P. Antimicrobial Chitosan Conjugates: Current Synthetic Strategies and Potential Applications. Int. J. Mol. Sci. 2020, 21, 499.
  •  
  • 13. da Rosa, C. G.; Borges, C. D.; Zambiazi, R. C.; Rutz, J. K.; da Luz, S. R.; Krumreich, F. D.; Benvenutti, E. V.; Nunes, M. R. Encapsulation of the Phenolic Compounds of the Blackberry (Rubus fruticosus). LWT-Food Sci. Technol. 2014, 58, 527-533.
  •  
  • 14. Comino-Sanz, I. M.; López-Franco, M. D.; Castro, B.: Pancorbo-Hidalgo, P. L. The Role of Antioxidants on Wound Healing: A Review of the Current Evidence. J. Clin. Med. 2021, 10, 3558.
  •  
  • 15. Kaczmarek, B.; Mazur, O.; Miłek, O.; Michalska-Sionkowska, M.; Osyczka, A. M.; Kleszczyʼnski, K. Development of Tannic Acid-enriched Materials Modified by Poly(ethylene glycol) for Potential Applications as Wound Dressing. Prog. Biomater. 2020, 9, 115-123.
  •  
  • 16. Cho, Y. S.; Kim S. K.; Ahn, C. B.; Je, J. Y. Preparation, Characterization, and Antioxidant Properties of Gallic Acid-grafted-chitosans. Carbohydr. Polym. 2011, 83, 1617-1622.
  •  
  • 17. Kim, J.; Kim, M. J.; Lee, K. Y. Wound Healing Effect of Curcumin Gel for Transdermal Delivery. Polym. Korea 2013, 37, 387-392.
  •  
  • 18. Oh, Y.; Ahn, C. B.; Marasinghe, M. P. C. K.; Je, J. Y. Insertion of Gallic Acid onto Chitosan Promotes the Differentiation of Osteoblasts from Murine Bone Marrow-derived Mesenchymal Stem Cells. Int. J. Biol. Macromol. 2021, 183, 1410-1418.
  •  
  • 19. Bai, J.; Zhang, Y.; Tang C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic Acid: Pharmacological Activities and Molecular Mechanisms Involved in Inflammation-related Diseases. Biomed. Pharmacother. 2021, 133, 110985.
  •  
  • 20. Madera-Santana, T. J.; Herrera-Méndez, C. H.; Rodriguez-Núñez, J. R. An Overview of the Chemical Modifications of Chitosan and Their Advantages. Green Mater. 2018, 6, 131-142.
  •  
  • 21. Kaparekar, P. S.; Pathmanapan, S.; Anandasadagopan, S. K. Polymeric Scaffold of Gallic Acid Loaded Chitosan Nanoparticles Infused with Collagen-fibrin for Wound Dressing Application. Int. J. Biol. Macromol. 2020, 165, 930-947.
  •  
  • 22. Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal 2014, 20, 1126-1167.
  •  
  • 23. Lu, Z.; Nie, G.; Belton, P. S.: Tang, H.; Zhao, B. Structure-activity Relationship Analysis of Antioxidant Ability and Neuroprotective Effect of Gallic Acid Derivatives. Neurochem. Int. 2006, 48, 263-274.
  •  
  • 24. Tuchmantel, W.; Kozikowski, A. P.; Romanczyk Jr., L. J. Studies in Polyphenol Chemistry and Bioactivity. 1. Preparation of Building Blocks from (+)-catechin. Procyanidin Formation. Synthesis of the Cancer Cell Growth Inhibitor, 3-O-galloyl-(2R,3R)-epicatechin-4β,8-[3-O-galloyl-(2R,3R)-epicatechin]. JACS 1999, 121, 12073-12081.
  •  
  • 25. Feng, P.; Luo, Y.; Ke, C.; Qiu, H.; Wang, W.; Zhu, Y.; Hou, R.; Xu, L.; Wu, S. Chitosan-based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Front. Bioeng. Biotechnol. 2021, 9, 650598.
  •  
  • 26. Levengood, S. L.; Zhang, M. Chitosan-based Scaffolds for Bone Tissue Engineering. J. Mater. Chem. B Mater. Biol. Med. 2014, 2, 3161-3184.
  •  
  • 27. Bajpai, B.; Patil, S. A New Approach to Microbial Production of Gallic Acid. Braz. J. Microbiol. 2008, 39, 708-711.
  •  
  • 28. Reinke, J. M.; Sorg, H. Wound Repair and Regeneration. Eur. Surg. Res. 2012, 49, 35-43.
  •  
  • 29. Barros, A. S. A.; Carvalho, H. O.; Ferreira dos Santos, I. V.; Taglialegna, T.; Ingret dos Santos Sampaio, T.; Duarte, J. L.; Fernandes, C. P.; Carvalho, J. C. T. Study of the Non-clinical Healing Activities of the Extract and Gel of Portulaca pilosa L. in Skin Wounds in Wistar Rats: A Preliminary Study. Biomed. Pharmacother. 2017, 96, 182-190.
  •  
  • 30. Vitonyte, J.; Manca, M. L.; Caddeo, C.; Valenti, D.; Peris, J. E.; Usach, I.; Nacher, A.; Matos, M.; Gutiérrez, G.; Orrù, G.; Fernàndez-Busquets X.; Fadda, A. M.; Manconi, M. Bifunctional Viscous Nanovesicles Co-loaded with Resveratrol and Gallic Acid for Skin Protection Against Microbial and Oxidative Injuries. Eur. J. Pharm. Biopharm. 2017, 114, 278-287.
  •  
  • 31. Hong, S. S.; Kim, J. H.; Li, H.; Shim, C. K. Advanced Formulation and Pharmacological Activity of Hydrogel of the Titrated Extract of C. asiatica. Arch. Pharm. Res. 2005, 28, 502-508.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(1): 58-63

    Published online Jan 25, 2023

  • 10.7317/pk.2023.47.1.58
  • Received on Sep 21, 2022
  • Revised on Oct 26, 2022
  • Accepted on Oct 27, 2022

Correspondence to

  • Jae-Young Je*** , and Chang-Moon Lee****, *****, ******
  • ***Division of Smart Healthcare, Pukyong National University, Busan 48513, Korea
    ****School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
    *****Department of Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
    ******Research Center of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea

  • E-mail: jjy1915@pknu.ac.kr, cmlee@jnu.ac.kr