Article
  • Development and Physical Characterization of a Composite Laminate Aramid/Epoxy Manufactured by the Vacuum Bag Method
  • Carlos Andres Espinosa Dominguez , Honorio Ortiz Hernández*, Helvio Mollinedo**, Orlando Susarrey Huerta, and Hilario Hernández Moreno*

  • Instituto Politécnico Nacional, SEPI ESIME Unidad Zacatenco, Ciudad de México, Av. Luis Enrique Erro S/N, UPALM, Zacatenco, C.P. 07738. México
    *Instituto Politécnico Nacional, ESIME Unidad Ticomán, Ciudad de México, Av. Ticomán 600 Col.
    San José Ticomán, C.P. 07340. México
    **Instituto Politécnico Nacional, UPIITA, Ciudad de México, Av. IPN, No. 2580 Col.
    La Laguna Ticomán, C.P. 07340. México

  • 진공백법으로 제조된 아라미드/에폭시 복합체의 개발 및 물리적 특성 분석
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Muralidhara, B.; Kumaresh Babu, S. P.; Suresha, B. Utilizing Vacuum Bagging Process to Prepare Carbon Fiber/Epoxy Composites with Improved Mechanical Properties. Mater. Today Proc. 2019, 27, 2022-2028.
  •  
  • 2. Bharath, D.; Sandhya Rani, B.; Saritha, V.; Irshad Khan, P.; Kumar Chokka, S. Tensile and Erosion Behaviour of Medium Calcined Alumina Microparticles on GFRP Composites Fabricated with Vacuum Bagging Process. Mater. Today Proc. 2020, 8-11.
  •  
  • 3. Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S. V. Voids in Fiber-Reinforced Polymer Composites: A Review on Their Formation, Characteristics, and Effects on Mechanical Performance. J. Compos. Mater. 2019, 53, 1579-1669.
  •  
  • 4. Huang, H.; Talreja, R. Effects of Void Geometry on Elastic Properties of Unidirectional Fiber Reinforced Composites. Compos. Sci. Technol. 2005, 65, 1964-1981.
  •  
  • 5. Park, S. Y.; Choi, C. H.; Choi, W. J.; Hwang, S. S. A Comparison of the Properties of Carbon Fiber Epoxy Composites Produced by Non-Autoclave with Vacuum Bag Only Prepreg and Autoclave Process. Appl. Compos. Mater. 2019, 26, 187-204.
  •  
  • 6. Rao, S.; Chiranjeevi, M. C.; Rajendra Prakash, M. Vacuum-Assisted Microwave Processing of Glass-Epoxy Composite Laminates Using Novel Microwave Absorbing Molds. Polym. Compos. 2016, 39, 1152-1160.
  •  
  • 7. Monticeli, F. M.; Montoro, S. R.; Voorwald, H. J. C.; Cioffi, M. O. H. Porosity Characterization of Carbon Fiber/Epoxy Composite Using Hg Porosimetry and Other Techniques. Polym. Eng. Sci. 2020, 60, 841-849.
  •  
  • 8. Almeida, M. De; Cerqueira, M.; Leali, M. The Influence of Porosity on the Interlaminar Shear Strength of Carbon/Epoxy and Carbon/Bismaleimide Fabric Laminates. Compos. Sci. Technol. 2001, 61, 2101-2108.
  •  
  • 9. Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S. V. Voids in Fiber-Reinforced Polymer Composites: A Review on Their Formation, Characteristics, and Effects on Mechanical Performance. J. Compos. Mater. 2019, 53, 1579-1669.
  •  
  • 10. Mujahid, Y.; Sallih, N.; Abdullah, M. Z.; Mustapha, M. Effects of Processing Parameters for Vacuum-Bag-Only Method on Void Content and Mechanical Properties of Laminated Composites. Polym. Compos. 2020, 42, 567-582.
  •  
  • 11. Pishvar, M.; Amirkhosravi, M.; Altan, M. C. Magnet Assisted Composite Manufacturing: A Novel Fabrication Technique for High-Quality Composite Laminates. Polym. Compos. 2019, 40, 159-169.
  •  
  • 12. Hou, T. H.; Jensen, B. J. Double‐Vacuum‐Bag Technology for Volatile Management in Composite Fabrication. Polym. Compos. 2008, 29, 906-914.
  •  
  • 13. Hu, W.; Centea, T.; Nutt, S. Mechanisms of Inter-Ply Void Formation during Vacuum Bag-Only Cure of Woven Prepregs. Polym. Compos. 2020, 41, 1785-1795.
  •  
  • 14. Abdurohman, K.; Satrio, T.; Muzayadah, N. L.; Teten. A Comparison Process between Hand Lay-up, Vacuum Infusion and Vacuum Bagging Method toward e-Glass EW 185/Lycal Composites. J. Phys. Conf. Ser. 2018, 1130, 12018.
  •  
  • 15. Amirkhosravi, M.; Pishvar, M.; Altan, M. C. Improving Laminate Quality in Wet Lay-up/Vacuum Bag Processes by Magnet Assisted Composite Manufacturing (MACM). Compos. Part A Appl. Sci. Manuf. 2017, 98, 227-237.
  •  
  • 16. Hamill, L.; Centea, T.; Nutt, S. Surface Porosity during Vacuum Bag-Only Prepreg Processing: Causes and Mitigation Strategies. Compos. Part A Appl. Sci. Manuf. 2015, 75, 1-10.
  •  
  • 17. Lee, J. M.; Kim, B. M.; Ko, D. C. Development of Vacuum-Assisted Prepreg Compression Molding for Production of Automotive Roof Panels. Compos. Struct. 2019, 213, 144-152.
  •  
  • 18. Camarena Arellano, D.; Vargas Rojas, E.; Hernández Moreno, H. Medición de Fracciones Volumétricas en Materiales Compuestos C-Ep y G-Ep por Digestión y Calcinación de Resina. In 5° Congreso Internacional de Ingeniería Electromecánica y de Sistemas, México, 2008; pp 595-599.
  •  
  • 19. Hilario Moreno, H. Desarrollo de un Material Compuesto para Aplicación Estructural. Master´s Thesis, ESIME Ticomán, IPN, México, 2002.
  •  
  • 20. García Rivera, S.S. Determinación de la Energía de Fractura de un Material Compuesto Carbono-Epoxy con Delaminaciones Sometido a Carga Cuasi-Estática y a Fatiga. Master´s Thesis, ESIQIE, IPN, México, 2017.
  •  
  • 21. Ortiz Hernández, H. Propuesta de Desarrollo de Material Compuesto para Protección Contra Impactos de Alta Velocidad. Master´s Thesis, ESIME Ticomán, IPN, México, 2018.
  •  
  • 22. Centea, T.; Grunenfelder, L. K.; Nutt, S. R. A Review of Out-of-Autoclave Prepregs - Material Properties, Process Phenomena, and Manufacturing Considerations. Compos. Part A Appl. Sci. Manuf. 2015, 70, 132-154.
  •  
  • 23. Muralidhara, B.; Kumaresh Babu, S. P.; Suresha, B. Utilizing Vacuum Bagging Process to Prepare Carbon Fiber/Epoxy Composites with Improved Mechanical Properties. Mater. Today Proc. 2019, 27, 2022-2028.
  •  
  • 24. ASTM International. Standard Test Methods for Constituent Content of Composite Materials; ASTM D3171-99(2004); West Conshohocken, PA, 2004.
  •  
  • 25. Sauce Rangel, V. M.; Vargas Rojas, E.; Hernández Moreno, H. Fabrication and Characterization of GFRP, Using Vacuum Bagging Technique and Low-Cost Environmental Materials. In XVII IMRC Congress, Cancún, Quintana Roo, México, 2008.
  •  
  • 26. ASTM International. Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement; ASTM D792-08; West Conshohocken, PA, 2008.
  •  
  • 27. ASTM International. Standard Test Method for Density of High-Modulus Fibers; ASTM D3800-99(2004); West Conshohocken, PA, 2004.
  •  
  • 28. West System Inc. Vacuum Bagging Techniques; Gougeon Brothers: Bay City, 2010; 1-52.
  •  
  • 29. Polymer Matrix Composites: Guidelines for Characterization of Structural Materials; SAE International on behalf of CMH-17, a division of Wichita State University: Warrendale, 2012.
  •  
  • 30. Gay, D. Composite Materials: Design and Applications; CRC Press Taylor & Francis Group: Boca Raton, 2014.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(1): 108-115

    Published online Jan 25, 2023

  • 10.7317/pk.2023.47.1.108
  • Received on Dec 3, 2021
  • Revised on Sep 28, 2022
  • Accepted on Oct 8, 2022

Correspondence to

  • Carlos Andres Espinosa Dominguez
  • Instituto Politécnico Nacional, SEPI ESIME Unidad Zacatenco, Ciudad de México, Av. Luis Enrique Erro S/N, UPALM, Zacatenco, C.P. 07738. México

  • E-mail: cespinosad21@outlook.com