Article
  • Investigations on the Mechanical Properties of PC and ABS Electrospun Nanofiber Embedded Glass Fiber Reinforced Composite
  • Mehmet Safa Bodur , Alper Adrian Baysan*, Merve Uysal Komurlu** , and Ali Avci***,†

  • Department of Material Science and Nanotechnology Engineering, Yeditepe University, Istanbul 34000, Türkiye
    *Department of Materials Engineering, KU Leuven, 3000, Belgium
    **Materials Science and Engineering, Texas A&M University, Texas 79016, United States
    ***Faculty of Engineering, Hakkari University, Hakkari 30000, Türkiye

  • PC 및 ABS 전기방사 나노섬유가 매립된 유리 섬유 강화 복합체의 기계적 성질에 관한 연구
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Canturri, C.; Greenhalgh, E. S.; Pinho, S. T.; Ankersen, J. Delamination Growth Directionality and the Subsequent Migration Processes–The Key to Damage Tolerant Design. Composites Part A 2013, 54, 79-87.
  •  
  • 2. Bull, D. J.; Scott, A. E.; Spearing, S. M.; Sinclair, I. The Influence of Toughening-Particles in CFRPs on Low Velocity Impact Damage Resistance Performance. Composites Part A 2014, 58, 47-55.
  •  
  • 3. Quan, D.; Ivankovic, A. Effect of Core–Shell Rubber (CSR) Nano-Particles on Mechanical Properties and Fracture Toughness of an Epoxy Polymer. Polymer 2015, 66, 16-28.
  •  
  • 4. Ngah, S. A.; Taylor, A. C. Toughening Performance of Glass Fibre Composites with Core–Shell Rubber and Silica Nanoparticle Modified Matrices. Composites Part A. 2016, 80, 292-303.
  •  
  • 5. Chikhi, N.; Fellahi, S.; Bakar, M. Modification of Epoxy Resin Using Reactive Liquid (ATBN) Rubber. Eur. Polym. J. 2002, 38, 251-264.
  •  
  • 6. Dadfar, M. R.; Ghadami, F. Effect of Rubber Modification on Fracture Toughness Properties of Glass Reinforced Hot Cured Epoxy Composites. Mater. Design. 2013, 47, 16-20.
  •  
  • 7. Nash, N. H.; Young, T. M.; McGrail, P. T.; Stanley, W. F. Inclusion of a Thermoplastic Phase to Improve Impact and Post-impact Performances of Carbon Fibre Reinforced Thermosetting Composites—A Review. Mater. Design. 2015, 85, 582-597.
  •  
  • 8. Huang, Y.; Kinloch, A. J. Modelling of the Toughening Mechanisms in Rubber-modified Epoxy Polymers. J. Mater. Sci. 1992, 27, 2753-2762.
  •  
  • 9. Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Fracture Toughness and Failure Mechanism of Graphene-Based Epoxy Composites. Key Eng. Mater. 2014, 97, 90-99.
  •  
  • 10. Park, Y. T.; Qian, Y.; Chan. C.; Suh, T.; Nejhad, M. G.; Macosko, C.; Stein, A. Epoxy Toughening with Low Graphene Loading. Adv. Funct. Mater. 2015, 25, 575-585.
  •  
  • 11. Al‑Dhahebib, A. M.; Gopinath, S. C. B.; Saheed, M. S. M. Graphene Impregnated Electrospun Nanofiber Sensing Materials: A Comprehensive Overview on Bridging Laboratory Set-up to Industry. Nano Convergence 2020, 7, 1-23.
  •  
  • 12. Gojny, F. H.; Wichmann, M. H. G.; Köpke, U.; Fiedler, B.; Schulte, K. Carbon Nanotube-reinforced Epoxy-composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content. Key Eng. Mater. 2004, 64, 2363-2371.
  •  
  • 13. Sprenger, S. Improving Mechanical Properties of Fibre-reinforced Composites Based on Epoxy Resins Containing Industrial Surface-modified Silica Nanoparticles: Review and Outlook. J. Compos. Mater. 2015, 49, 53-63.
  •  
  • 14. Peng, M.; Zhou, Y.; Zhou, G.; Yao, H. Triglycidyl Para-aminophenol Modified Montmorillonites for Epoxy Nanocomposites and Multi-scale Carbon Fibrereinforced Composites with Superior Mechanical Properties. Key Eng. Mater. 2017, 148, 80-88.
  •  
  • 15. Wang, J.; Xu, J.; He, Y. Novel Smart Textile with Ultraviolet Shielding and Thermo-regulation Fabricated via Electrospinning. J. Energ. Storagt. 2021, 42, 103094.
  •  
  • 16. Shao, W.; He, J.; Han Q.; Sang, F.; Wang, Q.; Chen, L.; Ding, B. A Biomimetic Multilayer Nanofibre Fabric Fabricated by Electrospinning and Textile Technology from Polylactic Acid and Tussah Silk Fibroin as a Scaffold for Bone Tissue Engineering. Mater. Sci. Eng.2016, 67, 599-610.
  •  
  • 17. Uddin, F.; Ahmad, T.; Ullan, Y.; Nawab, S.; Ahmad, F.; Azam, A.; Rasheed, M. S. Recent Trends in Water Purification Using Electrospun Nanofibrous Membranes. Inter J. Environ. Sci. Technol. 2021, 498, 2448-2455.
  •  
  • 18. Wang, D. H.; Su, J.; Liu, Y. M.; Yu, Y.; Su, Y.; Xie, G. X.; Jiang, L. L.; Zhou, L. N.; Zhu, D. Y.; Chen, S. H.; Yan, J.; Wang, X. X.; Long, Y. Z. Recent Advances in Electrospun Magnetic Nanofibers and Their Applications. J. Mater. Chem. C 2022, 10, 4072-4095.
  •  
  • 19. Lu, Y.; Xiao, X.; Liu, Y.; Wang, J.; Qi, S.; Huan, C.; Liu, H.; Zhu, Y.; Xu, G. Achieving Multifunctional Smart Textile with Long Afterglow and Thermo-regulation via Coaxial Electrospinning. J. Alloys Compounds 2020, 812, 152144.
  •  
  • 20. Kenawy, E. R.; Abdel-Hay, F. I.; El-Newehy, M. H.; Wnek, G. E. Processing of Polymer Nanofibres Through Electrospinning as Drug Delivery Systems. In Nanomaterials: Risks and Benefits; Dordrecht: Springer, 2009.
  •  
  • 21. Sill, T. J.; Recum, H. A. Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials 2008, 29, 1989-2006.
  •  
  • 22. Do, G. L.; Gyeong, B. R.; Jung, K.-H. Energy Storage Performance of Carbon Nanofiber Electrodes Derived from Crosslinked PI/PVDF Blends. Polym. Korea 2021, 45, 927-933.
  •  
  • 23. Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z; Jing, X. Electro- spinning of Polymeric Nanofibres for Drug Delivery Applications. J. Control. Release 2014, 185, 12-21.
  •  
  • 24. Agarwal, S.; Wendorff, J. H.; Greiner, A. Progress in the Field of Electrospinning for Tissue Engineering Applications. Adv. Mater. 2009, 21, 3343-3351.
  •  
  • 25. Younghan, S.; Yujeong K.; Hyungsup, K. Effect of Crystallinity and Thermal Stability of Nanostructured Cellulose/Halloysite Nanotube Composites. Polym. Korea 2019, 43, 958-964.
  •  
  • 26. Bosworth, L.; Downes, S. Electrospinning for Tissue Regeneration. Amsterdam: Elsevier, 2011.
  •  
  • 27. Ahmed, F. E.; Lalia, B. S.; Hashaikeh, R. A Review on Electrospinning for Membrane Fabrication: Challenges and Applications. Desalination 2015, 356, 15-30.
  •  
  • 28. Liu, H.; Hsieh, Y. L. Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate. J. Polym. Sci. Pol. Phys. 2002, 40, 2119-2129.
  •  
  • 29. Wu, L.; Yuan, X.; Sheng, J. Immobilization of Cellulase in Nanofibrous PVA Membranes by Electrospinning. J. Membrane Sci. 2005, 250, 167-173.
  •  
  • 30. Kim, J. S.; Reneker, D. H. Mechanical Properties of Composites Using Ultrafine Electrospunfibres. Polym. Composit. 1999, 20, 124-131.
  •  
  • 31. Akangah, P.; Shivakumar, K. Assessment of Impact Damage Resistance and Tolerance of Polymer Nanofibre Interleaved Composite Laminates. J. Chem. Sci. Technol. 2013, 2, 39-52.
  •  
  • 32. Akangah, P. Lingaiah, S. Shivakumar, K. Effect of Nylon-66 Nano-fibre Interleaving on Impact Damage Resistance of Epoxy/Carbon Fibre Composite Laminates. Compos. Struct. 2010, 92, 1432-1439.
  •  
  • 33. Zarei, H.; Brugo, T.; Belcari, J.; Bisadi, H.; Minak, G.; Zucchelli, A. Low Velocity Impact Damage Assessment of GLARE Fibre-metal Laminates Interleaved by Nylon 6, 6 Nanofibre Mats. Compos. Struct. 2017, 167, 123-131.
  •  
  • 34. Anand, A.; Kumar, N.; Harshe, R.; Joshi, M. Glass/epoxy Structural Composites with Interleaved Nylon 6/6 Nanofibres. J. Compos. Mater.2017, 51, 3291-3298.
  •  
  • 35. Giuliese, G.; Palazzetti, R.; Moroni, F.; Zucchelli, A.; Pirondi, A.; Minak, G.; Ramakrishna, S. Experimental and Numerical Study of the Effect of Nylon 6, 6 Electrospun Nanofibrous Mats on the Delamination of CFR-epoxy Composite Laminates. 19th International Conference on Composite Materials 2013, Montreal, Canada, July 28-Aug 2, 2013, Curran Associates Inc.: New York, 2013.
  •  
  • 36. Romo-Uribe, A.; Arizmendi, L.; Romero-Guzmán, M. E.; Sepulveda-Guzmán, S.; Cruz-Silva, R. Electrospun Nylon Nanofibres as Effective Reinforcement to polyaniline Membranes. ACS Appl. Mater. Inter.2009, 1, 2502-2508.
  •  
  • 37. Chen, L. S.; Huang, Z. M.; Dong, G. H.; He, C. L.; Liu, L.; Hu, Y. Y.; Li, Y. Development of a Transparent PMMA Composite Reinforced with Nanofibres. Polym. Compos. 2009, 30, 239-247.
  •  
  • 38. Neppalli, R.; Marega, C.; Marigo, A.; Bajgai, M. P.; Kim, H. Y.; Causin, V. Poly(ε-caprolactone) Filled with Electrospun Nylon Fibres: A Model for a Facile Composite Fabrication. Eur. Polym. J. 2010, 46, 968-976.
  •  
  • 39. Chen, B.; Cai, H.; Mao, C.; Gan, Y.; Wei, Y. Toughening and Rapid Self-healing for Carbon Fiber/Epoxy Composites Based on Electrospinning Thermoplastic Polyamide Nanofiber. J. Polym. Compos. 2022, 43, 3124-3135.
  •  
  • 40. Wu, X. F.; Yarin, A. L. Recent Progress in Interfacial Toughening and Damage Self-healing of Polymer Composites Based on Electrospun and Solution-blown Nanofibres: An Overview. J. Appl. Polym. Sci. 2013, 129, 2225-2237.
  •  
  • 41. Seongpil, A.; Liou, M.; Song, K. Y.; Jo, H. S.; Lee, M. W.; Al-Deyab, S. S.; Yarin, A. L.; Yoon, S. S. Highly Flexible Transparent Self-healing Composite Based on Electrospuncoreshellnanofibres Produced by Coaxial Electrospinning for Anti-corrosion and Electrical Insulation. Nanoscale 2015, 7, 17778-17785.
  •  
  • 42. Nissilä, T.; Hietala, M.; Oksman, K. A Method for Preparing Epoxy-cellulose Nanofibre Composites with an oriented Structure. Composites Part A 2019, 125, 105515.
  •  
  • 43. Schmatz, D. A.; Costa, J. A. V.; Morais, M. G. A Novel Nanocomposite for Food Packaging Developed by Electrospinning and Electrospraying. Food Packaging Shelf 2019, 2, 100314.
  •  
  • 44. Wu, H.; Chen, Y.; Chen, Q. Ding, Y.; Zhou, X.; Gao, H. Synthesis of Flexible Aerogel Composites Reinforced with Electrospun Nanofibres and Microparticles for Thermal Insulation. J. Nanomater 2013, 375093.
  •  
  • 45. Bahi, A.; Shao, J.; Mohseni, M.; Ko, F. K. Membranes Based on Electrospun Lignin-zeolite Composite Nanofibres. Sep. Purif. Technol. 2017, 187, 207-213.
  •  
  • 46. Neisiany, R. E.; Khorasani, S. N.; Lee, J. K. Y.; Naeimirad, M.; Ramakrishna, S. Interfacial Toughening of Carbon/Epoxy Composite by Incorporating Styrene Acrylonitrile Nanofibres. Theor. Appl. Fract. Mec. 2018, 95, 242-247.
  •  
  • 47. Calderon, A.; Que, M. C.; Premacio, A.; Marasigan, D. Morphological Characterization of Electrospun Zeolite-filled Acrylonitrile Butadiene Styrene Fibrous Membrane for Lowpressured CO2 Adsorption. Sustain. Environ. Res. 2014, 24, 365-371.
  •  
  • 48. Chiu, Y. J.; Chi, M. H.; Liu, Y. H.; Chen, J. T. Fabrication, Morphology Control, and Electroless Metal Deposition of Electrospun ABS Fibres. Macromol. Mater. Eng. 2016, 301, 895-901.
  •  
  • 49. Zulfi, A.; Hapidin, D. A.; Munir, M. M.; Iskandar, F.; Khairurrijal, K. The Synthesis of Nanofibre Membranes from Acrylonitrile Butadiene Styrene (ABS) Waste Using Electrospinning for Use as Air Filtration Media. RSC Adv. 2019, 9, 30741-30751.
  •  
  • 50. Charde, S. J.; Sonawane, S. S.; Sonawane, S. H.; Navin, S. Influence of Functionalized Calcium Carbonate Nanofillers on the Properties of Melt-extruded Polycarbonate Composites. Chem. Eng. Commun. 2018, 205, 492-505.
  •  
  • 51. Baby, T.; George, G.; Varkey, V.; Cherian, S. K. A New Approach for the Shaping up of Very Fine and Bead-free UV Light Absorbing Polycarbonate Fibres by Electrospinning. Polym. Test. 2019, 80, 106103.
  •  
  • 52. Krishnappa, R. V. N.; Desai, K.; Sung, C. Morphological Study of Electrospun Polycarbonates as a Function of the Solvent and Processing Voltage. J. Mater. Sci. 2003, 38, 2357-2365.
  •  
  • 53. Shawon, J.; Sung, C. Electrospinning of Polycarbonate Nanofibres with Solvent Mixtures THF and DMF. J. Mater. Sci. 2004, 39, 4605-4613.
  •  
  • 54. Moon, S.; Farris, R. J. The Morphology, Mechanical Properties, and Flammability of Aligned Electrospun Polycarbonate (PC) Nanofibres. Polym. Eng. Sci. 2008, 48, 1848-1854.
  •  
  • 55. Sihn, S.; Kim, R. Y.; Huh, W.; Lee, K. H.; Roy, A. K. Improvement of Damage Resistance in Laminated Composites with Electrospun Nano-interlayers. Compos. Sci. Technol. 2008, 68, 673-683.
  •  
  • 56. Shawon, J.; Sung, C. Electrospinning of Polycarbonate Nanofibres with Solvent Mixtures THF and DMF. J. Mater. Sci. 2004, 39, 4605-4613.
  •  
  • 57. Hassan, A.; Wong, Y. J. Mechanical Properties of High Impact ABS/PC Blends-Effect of Blend Ratio. Simposium Polimer Kebangsaan Ke-V, Selangeor, Malaysia, Aug 23-24, 2005.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(2): 117-126

    Published online Mar 25, 2023

  • 10.7317/pk.2023.47.2.117
  • Received on Sep 29, 2022
  • Revised on Nov 28, 2022
  • Accepted on Dec 20, 2022

Correspondence to

  • Ali Avci
  • Faculty of Engineering, Hakkari University, Hakkari 30000, Türkiye

  • E-mail: aliavci@hakkari.edu.tr