Article
  • Facile Preparation and Characterization of Transparent Polyurethane Using Eugenol-Based Bio-Polyol via Thiol-ene Reaction
  • Hyeon-Gyeong Oh, Do-Hyun Kim*, Sang-Ho Cha , and Sang-Bum Kim

  • Department of Chemical Engineering, Kyonggi University, Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Korea
    *Department of fire Safety Research, Korea Institute of Civil Engineering and Building Technology, Hwaesong-si, Gyeonggi-do 18544, Korea

  • 티올-엔 반응을 통한 유제놀 기반 바이오 폴리올을 이용한 투명한 폴리우레탄 필름의 제조
  • 오현경 · 김도현* · 차상호 · 김상범

  • 경기대학교 화학공학과, *한국건설기술연구원 화재안전연구소

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Nam, H. J.; Choa, S.-H.; Park, S.-H. Development and Characteristics of Multipurpose Transparent Polyurethane Film, J. Nanoscience Nanotechnol. 2021, 21, 5222-5228.
  •  
  • 2. Ding, R.; Li, W.; Wang, X.; Gui, T.; Li, B.; Han, P.; Tian, H.; Liu, A.; Wang, X.; Liu, X.; Gao, X.; Wang, W.; Song, L. A Brief Review of Corrosion Protective Films and Coatings Based on Graphene and Graphene Oxide, J. Alloys Compd. 2018, 764, 1039-1055.
  •  
  • 3. Jeon, S. I.; Kim, H. J.; Lee, J. H.; Ahn, C.-H. Development of a Hypoxia-Sensitive Material Producing Fluorescence and Ultrasound Signals, Macromolecular Research 2022, 30, 909-916.
  •  
  • 4. Choi, D. H.; Son, H.-M.; Lyu, M.-Y. Adhesive Strength Between Metal Plated with Inorganic Particles and Polycarbonates, Macromol. Res. 2022, 30, 880-890.
  •  
  • 5. Kim, J. G.; Shin, H. G. Functional Acrylate Polymer Synthesis: Postpolymerization Modification Approach, Macromol. Res. 2022, 30, 757-765.
  •  
  • 6. Lee, H.-G.; Kim, S.-Y.; Choi, E. J. Bending Behaviors in Photoresponsive Liquid Crystalline Polymer Films Derived from a Hockey Stick-Shaped Reactive Mesogen, Macromol. Res. 2022, 30, 799-810.
  •  
  • 7. Jang, R.; Lee, Y.; Song, K. H.; Kim, W. N. Effects of Nucleating Agent on the Thermal Conductivity and Creep Strain Behavior of Rigid Polyurethane Foams Blown by an Environment-Friendly Foaming Agent, Macromol. Res. 2021, 29, 15-23.
  •  
  • 8. Chattopadhyay, D. K.; Raju, K. V. S. N. Structural Engineering of Polyurethane Coatings for High Performance Applications, Prog. Polym. Sci. 2007, 32, 352-418.
  •  
  • 9. Omrani, I.; Farhadian, A.; Babanejad, N.; Shendi, H. K.; Ahmadi, A.; Nabid, M. R. Synthesis of Novel High Primary Hydroxyl Functionality Polyol from Sunflower Oil Using Thiol-yne Reaction and Their Application in Polyurethane Coating, Europ. Polym. J. 2016, 82, 220-231.
  •  
  • 10. Zhang, H.; An, L.; Wang, X.; Niu, C.; Hou, X. A Colorless, Transparent and Mechanically Robust Polyurethane Elastomer: Synthesis, Chemical Resistance and Adhesive Properties, New J. Chem. 2022, 46, 4762-4771.
  •  
  • 11. Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, Transparent, Robust, and Fast Scratch-Self-Healing Elastomers via a Phase-Locked Dynamic Bonds Design, Adv. Mater. 2018, 30, 1802556.
  •  
  • 12. Xie, W.; Pakdel, E.; Liu, D.; Sun, L.; Wang, X. Waste-Hair-Derived Natural Melanin/TiO2 Hybrids as Highly Efficient and Stable UV-Shielding Fillers for Polyurethane Films, ACS Sustainable Chem. Eng. 2020, 8, 1343-1352.
  •  
  • 13. Kong, X.; Liu, G.; Curtis, J. M. Novel Polyurethane Produced from Canola Oil Based Poly(ether ester) Polyols: Synthesis, Characterization and Properties, Europ. Polym. J. 2012, 48, 2097-2106.
  •  
  • 14. Pfister, D. P.; Xia, Y.; Larock, R. C. Recent Advances in Vegetable Oil-Based Polyurethanes, ChemSusChem 2011, 4, 703-717.
  •  
  • 15. Ionescu, M. Chemistry and Technology of Polyols for Polyurethanes, iSmithers Rapra Publishing: Shrewsbury, 2005.
  •  
  • 16. Hia, I. L.; Vahedi, V.; Pasbakhsh, P. Self-healing Polymer Composites: Prospects, Challenges, and Applications, Polym. Rev. 2016, 56, 225-261.
  •  
  • 17. Ramanujam, S.; Zequine, C.; Bhoyate, S.; Neria, B.; Kahol, P. K.; Gupta, R. K. Novel Biobased Polyol Using Corn Oil for Highly Flame-retardant Polyurethane Foams, C 2019, 5, 13.
  •  
  • 18. Marcovich, N.; Kurańska, M.; Prociak, A.; Malewska, E.; Kulpa, K. Open Cell Semi-rigid Polyurethane Foams Synthesized Using Palm Oil-based Bio-polyol, Industrial Crops and Products 2017, 102, 88-96.
  •  
  • 19. Vanbésien, T.; Monflier, E.; Hapiot, F. Rhodium-catalyzed One Pot Synthesis of Hydroxymethylated Triglycerides, Green Chem. 2016, 18, 6687-6694.
  •  
  • 20. Fridrihsone, A.; Stirna, U.; Lazdiņa, B.; Misāne, M.; Vilsone, D. Characterization of Polyurethane Networks Structure and Properties Based on Rapeseed Oil Derived Polyol, Europ. Polym. J. 2013, 49, 1204-1214.
  •  
  • 21. Kong, X.; Narine, S. S. Physical Properties of Polyurethane Plastic Sheets Produced from Polyols from Canola Oil, Biomacromolecules 2007, 8, 2203-2209.
  •  
  • 22. Ionescu, M.; Radojčić, D.; Wan, X.; Petrović, Z. S.; Upshaw, T. A. Functionalized Vegetable Oils as Precursors for Polymers by Thiol-ene Reaction, Europ. Polym. J. 2015, 67, 439-448.
  •  
  • 23. Bhoyate, S.; Ionescu, M.; Kahol, P. K.; Gupta, R. K. Castor-oil Derived Nonhalogenated Reactive Flame-retardant-based Polyurethane Foams with Significant Reduced Heat Release Rate, J. Appl. Polym. Sci. 2019, 136, 47276.
  •  
  • 24. Hu, Y.; Tian, Y.; Cheng, J.; Zhang, J. Synthesis of Eugenol-based Polyols via Thiol–ene Click Reaction and High-performance Thermosetting Polyurethane Therefrom, ACS Sustainable Chem. Eng. 2020, 8, 4158-4166.
  •  
  • 25. Yoshimura, T.; Shimasaki, T.; Teramoto, N.; Shibata, M. Bio-based Polymer Networks by Thiol–ene Photopolymerizations of Allyl-etherified Eugenol Derivatives, Europ. Polym. J. 2015, 67, 397-408.
  •  
  • 26. Topal, F.; Gulcin, I.; Dastan, A.; Guney, M. Novel Eugenol Derivatives: Potent Acetylcholinesterase and Carbonic Anhydrase Inhibitors, Int. J. Biological Macromol. 2017, 94, 845-851.
  •  
  • 27. Modjinou, T.; Versace, D.-L.; Abbad-Andallousi, S.; Bousserrhine, N.; Dubot, P.; Langlois, V.; Renard, E. Antibacterial and Antioxidant Bio-based Networks Derived from Eugenol Using Photo-activated Thiol-ene Reaction, React. Funct. Polym. 2016, 101, 47-53.
  •  
  • 28. Jeyakumar, G. E.; Lawrence, R. Mechanisms of Bactericidal Action of Eugenol Against Escherichia Coli, J. Herb. Med. 2021, 26, 100406.
  •  
  • 29. Mak, K.-K.; Kamal, M.; Ayuba, S.; Sakirolla, R.; Kang, Y.-B.; Mohandas, K.; Balijepalli, M.; Ahmad, S.; Pichika, M. A Comprehensive Review on Eugenol's Antimicrobial Properties and Industry Applications: A Transformation from Ethnomedicine to Industry, Pharmacogn. Rev. 2019, 13, 1-9.
  •  
  • 30. Athirathinam, K.; Nandakumar, S.; Kandasamy, R. Biopolymers and Osmolytes — A Focus Towards the Prospects of Stability and Adjuvanticity of Vaccines, Macromol. Res. 2022, 30, 599-608.
  •  
  • 31. Yu, C.; Song, Y. S. Modification of Graphene Aerogel Embedded Form-Stable Phase Change Materials for High Energy Harvesting Efficiency, Macromol. Res. 2022, 30, 198-204.
  •  
  • 32. Ryu, Y.-H.; Choi, K.; Oh, D.-H.; Choi, S.-W. Ionic Cross-Linkable Alendronate-Conjugated Biodegradable Polyurethane Films for Potential Guided Bone Regeneration, Macromol. Res. 2022, 30, 99-106.
  •  
  • 33. Yang, H.-S.; Cho, S.; Eom, Y.; Park, S.-A.; Hwang, S.Y.; Jeon, H.; Oh, D. X.; Park, J. Preparation of Self-Healable and Spinnable Hydrogel by Dynamic Boronate Ester Bond from Hyperbranched Polyglycerol and Boronic Acid-Containing Polymer, Macromol. Res. 2021, 29, 140-148.
  •  
  • 34. Qi, Y.; Weng, Z.; Kou, Y.; Song, L.; Li, J.; Wang, J.; Zhang, S.; Liu, C.; Jian, X. Synthesize and Introduce Bio-based Aromatic s-triazine in Epoxy Resin: Enabling Extremely High Thermal Stability, Mechanical Properties, and Flame Retardancy to Achieve High-performance Sustainable Polymers, Chem. Eng. J. 2021, 406, 126881.
  •  
  • 35. Hergenrother, P. M. The use, Design, Synthesis, and Properties of High Performance/high Temperature Polymers: An Overview, High Perform. Polym. 2003, 15, 3-45.
  •  
  • 36. Prakash, D.; Jaisankar, S. N. Thermoplastic Poly(urethane-thiourethane) Triblock Copolymers with SWCNTs Composite, Diam. Relat. Mater. 2019, 93, 34-41.
  •  
  • 37. Oh, T.-U.; Lee, W.-J.; Cha, S.-H. Preparation and Characterization of Polyurethane Using Cardanol-Based Bio-Polyol Obtained from One-Pot Synthetic Method, Polym. Korea. 2022, 46, 13-21.
  •  
  • 38. Li, Y.; Ren, Z.; Zhao, M.; Yang, H.; Chu, B. Multiphase Structure of Segmented Polyurethanes: Effects of Hard-segment Flexibility, Macromolecules 1993, 26, 612-622.
  •  
  • 39. Lan, P. N.; Corneillie, S.; Schacht, E.; Davies, M.; Shard, A. Synthesis and Characterization of Segmented Polyurethanes Based on Amphiphilic Polyether Diols, Biomaterials 1996, 17, 2273-2280.
  •  
  • 40. Low, Z. J.; Wong, J. C.; Ngoi, K. H.; Chia, C. H.; Kim, H.-J.; Kim, H.-C.; Ree, M. Hardness and Abrasion Resistance Characteristics of Poly(ethylene terephthalate) Films without and with Hard and Adhesive Coatings, Macromol. Res. 2021, 29, 230-243.
  •  
  • 41. Grimme, S. Do Special Noncovalent π–π Stacking Interactions Really Exist?, Angew. Chem. Int. Ed. 2008, 47, 3430-3434.
  •  
  • 42. Sun, Z.; Fan, H.; Chen, Y.; Huang, J. Synthesis of Self-matting Waterborne Polyurethane Coatings with Excellent Transmittance, Polym. Inter. 2018, 67, 78-84.
  •  
  • 43. Chang-Moo, P.; Seung-Ok, C.; Noh-Hee, J. Synthesis and Adhesion Properties of Aliphatic Polyurethane Adhesive, J. Korean Oil Chemists' Soc., 2010, 27, 461-469.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(2): 212-220

    Published online Mar 25, 2023

  • 10.7317/pk.2023.47.2.212
  • Received on Nov 23, 2022
  • Revised on Jan 10, 2023
  • Accepted on Jan 11, 2023

Correspondence to

  • Sang-Ho Cha , and Sang-Bum Kim
  • Department of Chemical Engineering, Kyonggi University, Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Korea

  • E-mail: sanghocha@kgu.ac.kr, ksb@kgu.ac.kr