Article
  • Changes in Glioblastoma Cell Characteristics by a Strong Anionic Poly(Cresolsulfonic Acid) and a Cationic Pyrvinium Complex
  • Sangmook Lee and Jin Ik Lim

  • Department of Chemical Engineering, College of Engineering, Dankook University, Jukjeon-dong, Yongin-si, Gyeonggi-do 16890, Korea

  • 강한 음이온성 폴리(크레졸술폰산)과 양이온성 피르비늄 복합체에 의한 교모세포종 세포 특성 변화
  • 이상묵 · 임진익

  • 단국대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. <!--[if !supportLists]-->1. <!--[endif]-->Duwa, R.; Emami, F.; Lee, S.; Jeong, J. H.; Yook, S. Polymeric and Lipid-based Drug Delivery Systems for Treatment Ofglio- blastoma Multiforme. J. Ind. Eng. Chem. 2019, 79, 261-273.
  •  
  • 2. <!--[if !supportLists]-->2. <!--[endif]-->Tran, K.; Brice, R.; Yao, L. Bioscaffold-based Study of Glioblastoma Cell Behavior and Drug Delivery for Tumor Therapy. Neurochem. Int. 2021, 147, 105049-105060.
  •  
  • 3. <!--[if !supportLists]-->3. <!--[endif]-->Hill, L.; Bruns, J.; Zustiak, S. P. Hydrogel Matrix Presence and Composition Influence Drug Responsesof Encapsulated Glio- blastoma Spheroids. Acta Biomater. 2021, 132, 437-447.
  •  
  • 4. <!--[if !supportLists]-->4. <!--[endif]-->Bastiancich, C.; Malfanti, A.; Préat, V.; Rahman, R. Rationally Designed Drug Delivery Systems for the Local Treatment of Resected Glioblastoma. Adv. Drug Deliv. Rev. 2021, 177, 113951-113977.
  •  
  • 5. <!--[if !supportLists]-->5. <!--[endif]-->Lia, Y.; Marcu, L. G.; Hull, A.; Bezak, E. Radioimmunotherapy of Glioblastoma Multiforme - Current Status and Future Prospects. Crit. Rev. Oncol. Hematol. 2021, 163, 103395.
  •  
  • 6. <!--[if !supportLists]-->6. <!--[endif]-->Guo, L.; Li, X.; Chen, Y.; Liu, R.; Ren, C.; Du, S. Radiotherapy (HFRT) with Concurrent and Adjuvant Temozolomide in Newly Diagnosed Glioblastoma: A Meta-analysis. Cancer Radiother. 2021, 25, 182-190.
  •  
  • 7. <!--[if !supportLists]-->7. <!--[endif]-->Gramatzki, D.; Roth, P.; Rushing, E. J.; Weller, J.; Andratschke, N.; Hofer, S.; Korol, D.; Regli, L.; Pangalu, A.; Pless, M.; Oberle, J.; Bernays, R.; Moch, H.; Rohrmann, S.; Weller, M. Bevacizumab May Improve Quality of Life, But Not Overall Survival in Glioblastoma: An Epidemiological Study. Ann. Oncol. 2018, 29, 1431-1436.
  •  
  • 8. <!--[if !supportLists]-->8. <!--[endif]-->Bregy, A.; Wong, T. M.; Shah, A. H.; Goldberg, J. M.; Komotar, R. J. Active Immunotherapy Using Dendritic Cells in the Treatment of Glioblastoma Multiforme. Cancer Treat. Rev. 2013, 39, 891-907.
  •  
  • 9. <!--[if !supportLists]-->9. <!--[endif]-->Sivoria, S.; Parolini, S.; Marcenaro, E.; Castriconi, R.; Pende, D.; Millo, R.; Moretta, A. Involvement of Natural Cytotoxicity Receptors in Human Natural Killer Cell-mediated Lysis of Neuroblastoma and Glioblastoma Cell Lines. J. Neuroimmunol. 2000,107, 220-225.
  •  
  • 10. <!--[if !supportLists]-->10. <!--[endif]-->Tunici, P.; Gianni, D.; Finocchiaro, G. Gene Therapy of Glio- blastomas: From Suicide to Homicide. Prog. Brain Res. 2001, 132, 711-719.
  •  
  • 11. <!--[if !supportLists]-->11. <!--[endif]-->Ohnishi, K.; Tani, T.; Tojo, N.; Sagara, J. Glioblastoma Cell Line Shows Phenotypes of Cancer Stem Cells in Hypoxic Micro- environment of Spheroids. Biochem. Biophys. Res. Commun. 2012, 546, 150-154.
  •  
  • 12. <!--[if !supportLists]-->12. <!--[endif]-->Berthier, S.; Arnaud, J.; Champelovier, P.; Col, E.; Garrel, C.; Cottet, C.; Boutonnat, J.; Laporte, F.; Faure, P.; Hazane-Puch, F. Anticancer Properties of Sodium Selenite in Human Glioblastoma Cell Cluster Spheroids. J. Trace Elem. Med. Biol. 2017, 44, 161-176.
  •  
  • 13. <!--[if !supportLists]-->13. <!--[endif]-->Noh, K. H.; Lee, S. H.; Lee, H.; Jeong, A. J.; Kim, K. O.; Shin, H. M.; Kim, H. R.; Park, M. J.; Park, J. B.; Lee, J.; Ye, S. K. Novel Cancer Stem Cell Marker MVP Enhances Temozolomide-resistance in Glioblastoma. Transl. Oncol. 2021, 15, 101255.
  •  
  • 14. <!--[if !supportLists]-->14. <!--[endif]-->Werner, M.; Lyu, C.; Stadlbauer, B.; Schrader, I.; Buchner, A.; Stepp, H.; Sroka, R.; Pohla, H. The Role of Shikonin in Improving 5-Aminolevulinic Acid-based Photodynamic Therapy and Chemotherapy on Glioblastoma Stem Cells. Photodiagnosis Photodyn. Ther. 2022, 26, 102987.
  •  
  • 15. <!--[if !supportLists]-->15. <!--[endif]-->Kim, J. S.; Shin, D. H.; Kim, J. S. Dual-targeting Immunolipo- somes Using Angiopep-2 and CD133 Antibody for Glioblastoma Stem Cells. J. Control Release 2018, 269, 245-257.
  •  
  • 16. <!--[if !supportLists]-->16. <!--[endif]-->Jamal, M.; Rath, B. H.; Tsang, P. S.; Camphausen, K.; Tofilon, P. J. The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells. Neoplasia 2012,14, 150-158.
  •  
  • 17. <!--[if !supportLists]-->17. <!--[endif]-->Matias, D.; Predes, D.; Niemeyer Filho, P.; Lopes, M. C.; Abreu, J. G.; Lima, F. R. S.; Moura Neto, V. Microglia-glioblastoma interactions: New role for Wnt signaling. Biochim. Biophys. Acta - Rev. Cancer 2017, 1868, 333-340.
  •  
  • 18. <!--[if !supportLists]-->18. <!--[endif]-->Khan, M.; Muzumdar, D.; Shiras, A. Attenuation of Tumor Suppressive Function of FBXO16 Ubiquitin Ligase Activates Wnt Signaling In Glioblastoma. Neoplasia 2019, 21, 106-116.
  •  
  • 19. <!--[if !supportLists]-->19. <!--[endif]-->Tompa, M.; Kajtar, B.; Galik, B.; Gyenesei, A.; Kalman, B. DNA Methylation and Protein Expression of Wnt Pathway Markers in Progressive Glioblastoma. Pathol. Res. Pract. 2021, 222, 153429.
  •  
  • 20. <!--[if !supportLists]-->20. <!--[endif]-->Lu, C.; Cui, C.; Liu, B.; Zou, S.; Song, H.; Tian, H.; Zhao, J.; Li, Y. FERMT3 Contributes to Glioblastoma Cell Proliferation and Chemoresistance to Temozolomide Through Integrin Mediated Wnt Signaling. Neurosci. Lett. 2017, 657, 77-83.
  •  
  • 21. <!--[if !supportLists]-->21. <!--[endif]-->Bagca, B. G.; Ozates, N. P.; Asik, A.; Caglar, H. O.; Gunduz, C.; Avci, C. B. Temozolomide Treatment Combined with AZD3463 Shows Synergisticeffect in Glioblastoma Cells. Biochem. Biophys. Res. Commun. 2020, 533, 1497-1504.
  •  
  • 22. <!--[if !supportLists]-->22. <!--[endif]-->Venugopal, C.; Hallett, R.; Vora, P.; Manoranjan, B.; Mahendram, S.; Qazi, M. A.; McFarlane, N.; Subapanditha, M.; Nolte, S. M.; Singh, M.; Bakhshinyan, D.; Garg, N.; Vijayakumar, T.; Lach, B.; Provias, J. P.; Reddy, K.; Murty, N. K.; Doble, B. W.; Bhatia, M.; Hassell, J. A.; Singh, S. K. Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor-Initiating Cells. Clin. Cancer Res. 2015, 21, 5324-5337.
  •  
  • 23. <!--[if !supportLists]-->23. <!--[endif]-->Li, H.; Liu, S.; Jin, R.; Xu, H.; Li, Y.; Chen, Y.; Zhao, G. Pyrvinium Pamoate Regulates MGMT Expression Through Suppressing the Wnt/β-catenin Signaling Pathway to Enhance the Glioblastoma Sensitivity to Temozolomide. Cell Death Discov. 2021, 7, 288.
  •  
  • 24. <!--[if !supportLists]-->24. <!--[endif]-->Biswas, A.; Yetirajam, R.; Das, S.; Parekh, A.; Mand, M. Targeting ECM via Stress Associated Regulation: A Potential Therapeutic Avenue for Overcoming Temozolamide Resistance in Glioblastoma. New Biotechnol. 2018, 44, S141-S142.
  •  
  • 25. <!--[if !supportLists]-->25. <!--[endif]-->Zhong, J.; Shan, W.; Zuo, Z. Norepinephrine Inhibits Migration and Invasion of Human Glioblastoma Cell Cultures Possibly via MMP-11 Inhibition. Brain Res. 2021, 1756, 147280.
  •  
  • 26. <!--[if !supportLists]-->26. <!--[endif]-->Pal, M.; Bhattacharya, S.; Kalyan, G.; Hazra, S. Cadherin Profiling for Therapeutic Interventions in Epithelial Mesenchymal Transition (EMT) and Tumorigen. Exp. Cell Res. 2018, 368, 137-146.
  •  
  • 27. <!--[if !supportLists]-->27. <!--[endif]-->Lewis-Tuffin, L. J.; Rodriguez, F.; Giannini, C.; Scheithauer, B.; Necela, B. M.; Sarkaria, J. N.; Anastasiadis, P. Z. Misregulated E-Cadherin Expression Associated with an Aggressive Brain Tumor Phenotype. PLoS ONE 2010, 5, e13665-13676.
  •  
  • 28. <!--[if !supportLists]-->28. <!--[endif]-->Noronha, C.; Ribeiro, A. S.; Taipa, R.; Castro, D. S.; Reis, J.; Faria, C.; Paredes, J. Cadherin Expression and EMT: A Focus on Gliomas. Biomedicines 2021, 9, 1328.
  •  
  • 29. <!--[if !supportLists]-->29. <!--[endif]-->Espitia De La Hoz, F. Efficacy and Tolerance of Policresulen in the Treatment of the Genitourinary Syndrome of Menopause. Int. J. Family Community Med. 2019, 3, 132-136.
  •  
  • 30. <!--[if !supportLists]-->30. <!--[endif]-->Zaher, A. R.; Helal, M. E.; Grawish, M. E.; Zedan, W. Immunohistochemical Expression of Epithelial Cadherin in the Buccal Mucosa of Guinea Pigs After Topical Application of Policresulen. Cairo Dental Journal 2014, 20, 17-21.
  •  
  • 31. <!--[if !supportLists]-->31. <!--[endif]-->Junior, I. F.; Kotze, P. G.; Rocha, J. G.; Miranda, E. F.; Sartor, M. C.; Martins, J. F.; Rejaile, V. A.; Filho, A. S.; Correa, M. F. Postoperative Topical Analgesia of Hemorrhoidectomy with Policresulen and Cinchocaine: A Prospective and Controlled Study. Rev. Col. Bras. Cir. 2014, 41, 92-98.
  •  
  • 32. 32. <!--[endif]-->Ohtaki, S.; Wanibuchi, M.; Kataoka-Sasaki, Y.; Sasaki, M.; Oka, S.; Noshiro, S.; Akiyama, Y.; Mikami, T.; Mikuni, N.; Kocsis, J. D.; Honmou, O. ACTC1 as An Invasion and Prognosis Marker in Glioma. J. Neurosurg. 2017, 126, 467-475.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(3): 379-386

    Published online May 25, 2023

  • 10.7317/pk.2023.47.3.379
  • Received on Feb 8, 2023
  • Revised on Mar 12, 2023
  • Accepted on Mar 13, 2023

Correspondence to

  • Jin Ik Lim
  • Department of Chemical Engineering, College of Engineering, Dankook University, Jukjeon-dong, Yongin-si, Gyeonggi-do 16890, Korea

  • E-mail: limjinik@dankook.ac.kr