Article
  • Superhydrophobically-Modified Polylactic Acid Films with Natural Additives from Walnut Shells
  • Seo Young Lee# , Hayoung Choi# , and Jun Kyun Oh

  • Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea

  • 호두껍질 천연 첨가제를 포함하는 초소수성으로 개질된폴리락틱산 필름의 제조
  • 이서영# · 최하영# · 오준균

  • 단국대학교 고분자시스템공학부 고분자공학전공

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Li, W. C.; Tse, H. F.; Fok, L. Plastic Waste in the Marine Environment: A Review of Sources, Occurrence and Effects. Sci. Total Environ. 2016, 566, 333-349.
  •  
  • 2. Jambeck, J. R.; Geyer, R.; Wilcox, C; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347, 768-771.
  •  
  • 3. Tarafdar, A.; Sirohi, R.; Balakumaran, P. A.; Reshmy, R.; Madhavan, A., Sindhu, R.; Binod, P.; Kumar, Y.; Kumar, D.; Sim, S. J. The Hazardous Threat of Bisphenol A: Toxicity, Detection and Remediation. J. Hazard. Mater. 2022, 423, 127097.
  •  
  • 4. Sridharan, S.; Kumar, M.; Singh, L.; Bolan, N. S.; Saha, M. Microplastics as an Emerging Source of Particulate Air Pollution: A Critical Review. J. Hazard. Mater. 2021, 418, 126245.
  •  
  • 5. Thakur, S.; Chaudhary, J.; Sharma, B.; Verma, A.; Tamulevicius, S.; Thakur, V. K. Sustainability of Bioplastics: Opportunities and Challenges. Curr. Opin. Green Sustain. Chem. 2018, 13, 68-75.
  •  
  • 6. Silva, D. D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, S.; Schroede, A. Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) In Medical Implants and Theranostic Systems. Chem. Eng. J. 2018, 340, 9-14.
  •  
  • 7. Cha, D. S.; Chinnan, M. S. Biopolymer-Based Antimicrobial Packaging: A Review. Crit. Rev. Food Sci. Nutr. 2004, 44, 223-237.
  •  
  • 8. Frone, A. F.; Berlioz, S.; Chailan, J.-F.; Panaitescu, D. M. Morphology and Thermal Properties of PLA–Cellulose Nanofibers Composites. Carbohydr. Polym. 2013, 91, 377-384.
  •  
  • 9. Wang, X.; Peng, S.; Chen, H.; Yu, X.; Zhao, X. Mechanical Properties, Rheological Behaviors, and Phase Morphologies of High-Toughness PLA/PBAT Blends by In-Situ Reactive Compatibilization. Compos. Pt. B-Eng. 2019, 173, 107028.
  •  
  • 10. De, D.; De, D.; Adhikari, B. The Effect of Grass Fiber Filler on Curing Characteristics and Mechanical Properties of Natural Rubber. Polym. Adv. Technol. 2004, 15, 708-715.
  •  
  • 11. Wang, G.; Zhang, D.; Wan, G.; Zhao, G. Glass Fiber Reinforced PLA Composite with Enhanced Mechanical Properties, Thermal Behavior, and Foaming Ability. Polymer 2019, 181, 121803.
  •  
  • 12. Sanjay, M. R.; Madhu, P.; Mohammad, J.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review. J. Clean Prod. 2018, 172, 566-581.
  •  
  • 13. Song, X.; Guan, W.; Qin, H.; Han, X.; Wu, L.; Ye, Y. Properties of Poly(Lactic Acid)/Walnut Shell/Hydroxyapatite Composites Prepared With Fused Deposition Modeling. Sci. Rep. 2022, 12, 11563.
  •  
  • 14. Członka, S.; Kairytė, A.; Miedzińska, K.; Strąkowska, A. Polyurethane Composites Reinforced with Walnut Shell Filler Treated with Perlite, Montmorillonite and Halloysite. Environ. Prog. Sustain. Energy 2021, 22, 7304.
  •  
  • 15. Orue, A.; Eceiza, A.; Arbelaiz, A. The Use of Alkali Treated Walnut Shells as Filler in Plasticized Poly(Lactic Acid) Matrix Composites. Ind. Crop. Prod. 2020, 145, 111993.
  •  
  • 16. Pradhan, P.; Nanda, B. P.; Satapathy, A. Polyester Composites Filled with Walnut Shell Powder: Preparation and Thermal Characterization. Polym. Compos. 2020, 41, 3294-3308.
  •  
  • 17. Gürü, M.; Atar, M.; Yıldırım, R. Production of Polymer Matrix Composite Particleboard from Walnut Shell and Improvement of Its Requirements. Mater. Des. 2008, 29, 284-287.
  •  
  • 18. Auras, R; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4, 835-864.
  •  
  • 19. Wachtel, M. R.; Charkowski, A. O. Cross-Contamination of Lettuce with Escherichia coli O157:H7. J. Food Prot. 2002, 65, 465-470.
  •  
  • 20. Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018, 66, 395-413.
  •  
  • 21. DeFlorio, W.; Liu, S.; White, A. R.; Taylor, T. M.; Cisneros-Zevallos, L.; Min, Y.; Scholar, E. M. A. Recent Developments in Antimicrobial and Antifouling Coatings to Reduce or Prevent Contamination and Cross-Contamination of Food Contact Surfaces by Bacteria. Compr. Rev. Food. Sci. Food Saf. 2021, 20, 3093-3134.
  •  
  • 22. Ramaiah, G; Tegegne, A.; Melese, B. Developments in Nano-materials and Analysing its role in Fighting COVID-19. Mater. Today Proc. 2021, 47, 4357-4363.
  •  
  • 23. Sathishkumar, G.; Gopinath, K.; Zhang, K.; Kang, E.-T.; Xu, L.; Yu, Y. Recent Progress in Tannic Acid-Driven Antibacterial/Antifouling Surface Coating Strategies. J. Mater. Chem. B 2022, 10, 2296-2315.
  •  
  • 24. Yabalak, E.; Eliuz, E.A.E. Green Synthesis of Walnut Shell Hydrochar, Its Antimicrobial Activity and Mechanism on Some Pathogens as a Natural Sanitizer. Food Chem. 2022, 366, 130608.
  •  
  • 25. Erkoc, P; Ulucan-Karnak, F. Nanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategies. Prosthesis 2021, 3, 25-52.
  •  
  • 26. Oh, J.K.; Rapisand, W.; Zhang, Yegin, Y., Min, Y.; Castillo, A.; Cisneros-Zevallos, L.; Akbulut, M. Surface Modification of Food Processing and Handling Gloves for Enhanced Food Safety and Hygiene. J. Food Eng. 2016, 187, 82-91.
  •  
  • 27. Madsen, B.; Gamstedt, E. K. Wood versus Plant Fibers: Similarities and Differences in Composite Applications. Adv. Mater. Sci. Eng. 2013, 2013, 564346.
  •  
  • 28. Song, X.; He, W.; Yang, S.; Huang, G.; Yang, T. Fused Deposition Modeling of Poly (Lactic Acid)/Walnut Shell Biocomposite Filaments—Surface Treatment and Properties. Appl. Sci. 2019, 9, 4892.
  •  
  • 29. Chen, S.; Chen, Y.; Wang, Z.; Chen, H.; Fan, D. Renewable Bio-Based Adhesive Fabricated from a Novel Biopolymer and Soy Protein. RSC Adv. 2021, 11, 11724-11731.
  •  
  • 30. Suryanegara, L.; Nakagaito, A. N.; Yano, H. The Effect of Crystallization of PLA on the Thermal and Mechanical Properties of Microfibrillated Cellulose-Reinforced PLA Composites. Compos. Sci. Technol. 2009, 69, 1187-1192.
  •  
  • 31. Luo, J.; Luo, J., Zhang, J.; Bai, Y., Gao, Q., Li, J.; Li, L. A New Flexible Soy-Based Adhesive Enhanced with Neopentyl Glycol Diglycidyl Ether: Properties and Application. Polymers 2016, 8, 346.
  •  
  • 32. Phuong, L. X.; Shida, S.; Saito, Y. Effects of Heat Treatment on Brittleness of Styrax Tonkinensis Wood. J. Wood Sci. 2007, 53, 181-186.
  •  
  • 33. Vigdorowitsch, M.; Tsygankova, L. E.; Ostrikov, V. V.; Rodionova, L. D. Beyond the Wenzel and Cassie–Baxter World: Mathematical Insight into Contact Angles. Math. Meth. Appl. Sci. 2022, 45, 11479-11497.
  •  
  • 34. Wang, D.; Sun, Q.; Hokkanen, M. J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B.; Zhou, Q.; Chen, L.; Wang, Z.; Ras, R. H. A.; Deng, X. Design of Robust Superhydrophobic Surfaces. Nature 2020, 582, 55-59.
  •  
  • 35. Oh, J. K.; Lu, X.; Min, Y.; Cisneros-Zevallos, L.; Akbulut, M. Bacterially Antiadhesive, Optically Transparent Surfaces Inspired from Rice Leaves. ACS Appl. Mater. Interfaces 2015, 7, 19274-19281.
  •  
  • 36. Atthi, N.; Sripumkhai, W.; Pattamang, P.; Thongsook, O.; Srihapat, A.; Meananeatra, R.; Supadech, J.; Klunngien, N.; Jeamsaksiri, W. Fabrication of Robust PDMS Micro-Structure with Hydrophobic and Antifouling Properties. Microelectron. Eng. 2020, 224, 111255.
  •  
  • 37. Lim, J. I.; Kim, S. I.; Jung, Y.; Kim,S. H. Fabrication and Medical Applications of Lotus-Leaf-Like Structured Superhydrophobic Surfaces. Polym. Korea 2013, 37, 411-419.
  •  
  • 38. Oh, J. K.; Perez, K.; Kohli, N.; Kara, V.; Li, J.; Min, Y.; Castillo, A.; Taylor, M.; Jayaraman, A.; Cisneros-Zevallos, L.; Akbulut, M. Hydrophobically-Modified Silica Aerogels: Novel Food-Contact Surfaces with Bacterial Anti-Adhesion Properties. Food Control 2015, 52, 132-141.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(4): 528-534

    Published online Jul 25, 2023

  • 10.7317/pk.2023.47.4.528
  • Received on Apr 20, 2023
  • Revised on Jun 7, 2023
  • Accepted on Jun 7, 2023

Correspondence to

  • Jun Kyun Oh
  • Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea

  • E-mail: junkyunoh@dankook.ac.kr