• Preparation and Physical Properties of a Silicone Hydrogel Contact Lens with a High-water-content Cellulose Surface Layer
  • Dong-Won Shin# , Miran Kim# , Minjin Kang, Young-Jin Kim, Hyun Mee Lee*, Ki Hong Kim*, and Yoon Soo Han

  • School of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongbuk 38430, Korea
    *Department of Optometry and Vision Science, Daegu Catholic University, Gyeongbuk 38430, Korea

  • 고함수율의 셀룰로오스 표면층을 갖는 실리콘 하이드로젤 콘택트렌즈의 제조 및 물성
  • 신동원# · 김미란# · 강민진 · 김영진 · 이현미* · 김기홍* · 한윤수

  • 대구가톨릭대학교 신소재화학공학부, *대구가톨릭대학교 안경광학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Musgrave, C. S. A.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261.
  •  
  • 2. Athreya, P. K.; Bhardwaj, G. K. Contact Lens Materials and Modalities. Tr. Ophtha. Open Acc. J. 2018, 1, 10-14.
  •  
  • 3. Guillon, M. Are Silicon Hydrogel Contact Lenses More Comfortable Than Hydrogel Contact Lenses? Eye Contact Lens 2013, 39, 86-92.
  •  
  • 4. Kim, E.; Saha, M.; Ehrmann, K. Mechanical Properties of Contact Lens Materials. Eye Contact Lens 2018, 44, S148-S156.
  •  
  • 5. Singh, A.; Li, P.; Beachley, V.; McDonnell, P.; Elisseeff, J. H. A Hyaluronic Acid-binding Contact Lens with Enhanced Water Retention. Contact Lens Anterior Eye 2015, 38, 79-84.
  •  
  • 6. Santos, L.; Rodrigues, D.; Lira, M.; Oliveira, M. E. C. D. R.; Oliveira, R.; Vilar, E. Y.-P.; Azeredo, J. The Influence of Surface Treatment on Hydrophobicity, Protein Adsorption and Microbial Colonization of Silicone Hydrogel Contact Lenses. Contact Lens Anterior Eye 2007, 30, 183-188.
  •  
  • 7. Hough, D. A.; Patel K. D. Plasma Modification of GPH Lenses-An Unexpected Clinical Result. J. Br. Contact Lens Assoc. 1986, 9, 38-40.
  •  
  • 8. Korogiannaki, M.; Zhang, J.; Sheardown, H. Surface Modification of Model Hydrogel Contact Lenses with Hyaluronic Acid via Thiol-ene “click” Chemistry for Enhancing Surface Characteristics. J. Biomater. Appl. 2017, 32, 446-462.
  •  
  • 9. Bae, J. H.; Choi, B.; Kim, Y.-J.; Lee, H. M.; Kim, K. H.; Han, Y. S. Preparation and Physical Properties of a Silicone Hydrogel Contact Lens Grafted with a Phosphorylcholine-Containing Hydrophilic. Macromol. Res. 2022, 30, 446-453.
  •  
  • 10. Maulvi, F. A.; Patel, P. J.; Soni, P. D.; Desai, A. R.; Desai, D. T.; Shukla, M. R.; Ranch, K. M.; Shah, S. A.; Shah, D. O. Novel Poly(vinylpyrrolidone)-Coated Silicone Contact Lenses to Improve Tear Volume During Lens Wear: In Vitro and In Vivo Studies. ACS Omega 2020, 5, 18148-18154.
  •  
  • 11. Kim, G. Y.; Lee, H. D.; Kim, Y. H. Preparation and Thermoresponsive Properties of 2-Hydroxy-3-butoxypropyl Hydroxyethyl Cellulose and Its Hydrogel Crosslinked with Epichlorohydrin. Polym. Korea 2020, 44, 495-504.
  •  
  • 12. Cho, S.-A.; Sung, A.-Y. Influence of Artificial Tear Containing Carboxymethyl Cellulose Component on Physical Properties of Hydrogel Contact lens. J. Korean Oph. Opt. Soc. 2013,18, 457-463.
  •  
  • 13. Ko, N.-Y.; Lee, P. H.; Sung, A.-Y.; Lee, H. M. Study on Characteristic Changes of Contact Lenses According to Interpenetrating Polymer Network Time and Method Using Seaweed Polysaccharide. Polym. Korea 2021, 45, 775-782.
  •  
  • 14. Michaud, L.; Worp, E. v. d.; Brazeau, D.; Warde, R.; Giasson, C. J. Predicting Estimates of Oxygen Transmissibility for Scleral Lenses. Contact Lens Anterior Eye 2012, 35, 266-271.
  •  
  • 15. Obendorf, D.; Wilhelm M. Determination of Oxygen Permeability/Transmissibility and Storage of Contact Lenses Using HPLC with Reductive Electrochemical Detection in Combination with a Specifically Designed Sampling Unit. Anal. Chem. 2003, 75, 1374-1381.
  •  
  • 16. Shimojo, A. A. M.; Pires, A. M. B.; Lichy R.; Santana, M. H. A. The Performance of Crosslinking with Divinyl Sulfone as Controlled by the Interplay between the Chemical Modification and Conformation of Hyaluronic Acid. J. Braz. Chem. Soc. 2015, 26, 506-512.
  •  
  • 17. Sannino, A.; Madaghiele, M.; Conversano, F.; Mele, G.; Maffezzoli, A.; Netti, P. A.; Ambrosio, L.; Nicolais, L. Cellulose Derivative-Hyaluronic Acid-Based Microporous Hydrogels Cross-Linked through Divinyl Sulfone (DVS) To Modulate Equilibrium Sorption Capacity and Network Stability. Biomacromolecules 2004, 5, 92-96.
  •  
  • 18. Gomez, I.; Alesanco, Y.; Blazquez, J. A.; Vinuales, A.; Colmenares, L. C. Room-Temperature Self-Standing Cellulose-Based Hydrogel Electrolytes for Electrochemical Devices. Polymers 2020, 12, 2686.
  •  
  • 19. Yun, J. P.; Park, Y. H.; Lee, S.; Park, K. H.; Lee, C. J. Preparation of Surface-anionized Poly(vinyl alcohol-co-methacrylic acid) Hydrogel Beads. Polym. Korea 2003, 27, 159-166.
  •  
  • 20. Yang, S. B.; Karim, M. R.; Lee, J.; Yeum, J. H.; Yeasmin, S. Alkaline Treatment Variables to Characterize Poly(Vinyl Alcohol)/Poly(Vinyl Butyral/Vinyl Alcohol) Blend Films. Polymers 2022, 14, 3916.
  •  
  • 21. Gao, M.-H.; Xie, X.; Huang, T.; Zhang, N.; Wang, Y. Glutaraldehyde‑assisted Crosslinking in Regenerated Cellulose Films Toward High Dielectric and Mechanical Properties. Cellulose 2022, 29, 8177-8194.
  •  
  • 22. Hou, T.; Guo, K.; Wang, Z.; Zhang, X.-F.; Feng, Y.; He, M.; Yao, J. Glutaraldehyde and Polyvinyl Alcohol Crosslinked Cellulose Membranes for Efficient Methyl Orange and Congo Red Removal. Cellulose 2019, 26, 5065-5074.
  •  
  • 23. Kharaghani, D.; Dutta, D.; Ho, K. K. K.; Zhang, K.; Kai, W.; Ren, X.; Willcox, M. D. P.; Kim, I. S. Active Loading Graphite/Hydroxyapatite into the Stable Hydroxyethyl Cellulose Scaffold Nanofibers for Artificial Cornea Application. Cellulose 2020, 27, 3319-3334.
  •  
  • 24. Mansur, H. S.; Sadahira, C. M.; Souza, A. N.; Mansur, A. A, P. FTIR Spectroscopy Characterization of Poly(vinyl alcohol) Hydrogel with different Hydrolysis Degree and Chemically Crosslinked with Glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539-548.
  •  
  • 25. Figueiredo, K. C. S.; Alves, T. L. M.; Borges, C. P. Poly(vinyl alcohol) Films Crosslinked by Glutaraldehyde Under Mild Conditions. J. Appl. Polym. Sci. 2009, 111, 3074-3080.
  •  
  • 26. Rudra, E.; Kumar, V.; Kundu, P. P. Acid Catalysed Cross-Linking of Poly Vinyl Alcohol (PVA) by Glutaraldehyde: Effect of Crosslink Density on the Characteristics of PVA Membranes Used in Single Chambered Microbial Fuel Cells. RSC Adv. 2015, 5, 83436-83447.
  •  
  • 27. Korogiannaki, M.; Jones, L.; Sheardown, H. Impact of a Hyaluronic Acid-Grafted Layer on the Surface Properties of Model Silicone Hydrogel Contact Lenses. Langmuir 2019, 35, 950-961.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(5): 650-659

    Published online Sep 25, 2023

  • 10.7317/pk.2023.47.5.650
  • Received on May 29, 2023
  • Revised on Jul 12, 2023
  • Accepted on Jul 13, 2023

Correspondence to

  • Yoon Soo Han
  • School of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongbuk 38430, Korea

  • E-mail: yshancu@cu.ac.kr