• Assessment of Near-infrared Penetration Depth and Photothermal Efficiency of Organic and Inorganic Materials in Tissue-mimicking Phantoms
  • Juyoung Hwang, Rim Mhamdi, Banyu Firdaus Soeriawidjaja, Min Chan Kim*, Astrini Pradyasti**, Chung Thanh Pham, Kyu Hyun*, Hyun Jung Kim***, Songyi Lee, Mun Ho Kim**, and Minseok Kwak

  • Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University
    *School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
    **Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea
    ***Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE3, Cleveland, OH, 44195, USA

  • 조직 유사 팬텀의 근적외선 투과 깊이에 따른 유기 및 무기 물질 광열 효율 평가
  • 황주영 · 림므함디 · 반유피르다우스수리야위자야 · 김민찬* · 아스트리니프라디야스티** · 충탄팜 · 현 규* 김현중*** · 이송이 · 김문호** · 곽민석

  • 부경대학교 화학과 4차산업융합바이오닉스공학과, *부산대학교 화공생명공학부 **부경대학교 고분자공학과, ***미국 클리블랜드 클리닉

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Wang, P.; Chen, B.; Zhan, Y.; Wang, L.; Luo, J.; Xu, J.; Zhan, L.; Li, Z.; Liu, Y.; Wei, J. Enhancing the Efficiency of Mild-Temperature Photothermal Therapy for Cancer Assisting with Various Strategies. Pharmaceutics 2022, 14, 2279.
  •  
  • 2. Shi, X.; Tian, Y.; Liu, Y.; Xiong, Z.; Zhai, S.; Chu, S.; Gao, F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front. Oncol. 2022, 12, 939365.
  •  
  • 3. Gao, J.; Wang, W. Q.; Pei, Q.; Lord, M. S.; Yu, H. J. Engineering Nanomedicines Through Boosting Immunogenic Cell Death for Improved Cancer Immunotherapy. Acta. Pharmacol. Sin. 2020, 41, 986-994.
  •  
  • 4. Tranberg, K. G. Local Destruction of Tumors and Systemic Immune Effects. Front. Oncol. 2021, 11, 708810.
  •  
  • 5. Xia, Q. S.; Liu, X.; Xu, B.; Zhao, T. D.; Li, H. Y.; Chen, Z. H.; Xiang, Q.; Geng, C. Y.; Pan, L.; Hu, R. L.; Qi, Y. J.; Sun, G. F.; Tang, J. T. Feasibility Study of High-temperature Thermoseed Inductive Hyperthermia in Melanoma Treatment. Oncol. Rep. 2011, 25, 953-62.
  •  
  • 6. Itoh, Y.; Yamada, Y.; Kazaoka, Y.; Ishiguchi, T.; Honda, N. Combination of Chemotherapy and Mild Hyperthermia Enhances the Anti-tumor Effects of Cisplatin and Adriamycin in Human Bladder Cancer T24 Cells In Vitro. Experimental and Therapeutic Medicine 2010, 1, 319-323.
  •  
  • 7. Li, X.; Lovell, J. F.; Yoon, J.; Chen, X. Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657-674.
  •  
  • 8. Hsiao, C. W.; Chuang, E. Y.; Chen, H. L.; Wan, D.; Korupalli, C.; Liao, Z. X.; Chiu, Y. L.; Chia, W. T.; Lin, K. J.; Sung, H. W. Photothermal Tumor Ablation in Mice with Repeated Therapy Sessions Using NIR-absorbing Micellar Hydrogels Formed In Situ. Biomaterials 2015, 56, 26-35.
  •  
  • 9. Ahn, G.-Y.; Choi, I.; Yun, T. H.; Choi, S.-W. Fabrication of Starch-Lauric Acid Nanoparticles for Potential Tumor Therapy. Polym. Korea 2021, 45, 62-67.
  •  
  • 10. Hwang, J.; Jin, J. O. Attachable Hydrogel Containing Indocyanine Green for Selective Photothermal Therapy against Melanoma. Biomolecules 2020, 10, 1124.
  •  
  • 11. Chu, Y.; Liao, S.; Liao, H.; Lu, Y.; Geng, X.; Wu, D.; Pei, J.; Wang, Y. Second Near-infrared Photothermal Therapy with Superior Penetrability Through Skin Tissues. CCS. Chem. 2022, 4, 3002-3013.
  •  
  • 12. Marshall, R. P.; Vlková, K. Spectral Dependence of Laser Light on Light-tissue Interactions and Its Influence on Laser Therapy: An Experimental Study. Archivos De Medicina 2020, 5, 5.
  •  
  • 13. He, Y.; Cao, Y.; Wang, Y. Progress on Photothermal Conversion in the Second NIR Window Based on Conjugated Polymers. Asian J. Org. Chem. 2018, 7, 2201-2212.
  •  
  • 14. Sun, R.; Chen, H.; Sutrisno, L.; Kawazoe, N.; Chen, G. Nanomaterials and Their Composite Scaffolds for Photothermal Therapy and Tissue Engineering Applications. Sci. Technol. Adv. Mater. 2021, 22, 404-428.
  •  
  • 15. Dai, X.; Li, X.; Liu, Y.; Yan, F. Recent Advances in Nanoparticles-based Photothermal Therapy Synergizing with Immune Checkpoint Blockade Therapy. Mater. Design 2022, 110656.
  •  
  • 16. Hwang, J.; An, E. K.; Kim, S. J.; Zhang, W.; Jin, J. O. Escherichia Coli Mimetic Gold Nanorod-Mediated Photo- and Immunotherapy for Treating Cancer and Its Metastasis. ACS Nano. 2022, 16, 8472-8483.
  •  
  • 17. Montaseri, H.; Kruger, C. A.; Abrahamse, H. Recent Advances in Porphyrin-Based Inorganic Nanoparticles for Cancer Treatment. Int. J. Mol. Sci. 2020, 21, 3358.
  •  
  • 18. Kim, M.; Noh, H. Study on Colloidal Stability of Gold Nanoparticles Modified with Sugar Molecules. Polym. Korea 2022, 46, 68-73.
  •  
  • 19. Zhao, L.; Zhang, X.; Wang, X.; Guan, X.; Zhang, W.; Ma, J. Recent Advances in Selective Photothermal Therapy of Tumor. J. Nanobiotechnology 2021, 19, 335.
  •  
  • 20. Hwang, J.; An, E. K.; Zhang, W.; Park, H. B.; Kim, S. J.; Yadav, D.; Kim, J.; Choi, I.; Kwak, M.; Lee, P. C.; Zhang, X.; Xu, J.; Jin, J. O. Recombinant Programmed Cell Death Protein 1 Functions as An Immune Check Point Blockade and Enhances Anti-cancer Immunity. Biomaterials 2022, 285, 121550.
  •  
  • 21. Kang, M.; Kim, H.; Lee, T. H.; Huh, Y. H.; Kim, Y. S.; Park, S. J.; Jin, J.-O.; Lee, P. C.; Kwak, M. Highly Photostable Rylene-encapsulated Polymeric Nanoparticles for Fluorescent Labeling in Biological System. J. Ind. Eng. Chem. 2019, 80, 239-246.
  •  
  • 22. Soeriawidjaja, B. F.; Kang, M.; Kim, H.; Yang, H. K.; Kim, J. H.; Kwak, M. Near Infrared Dye-encapsulated Polymeric Nanoparticles with Enhanced Photostability Under Hyperthermal Condition. Molecular Crystals and Liquid Crystals 2019, 687, 53-59.
  •  
  • 23. Cho, J.; Prasad, B.; Kim, J. K. Near-infrared Laser Irradiation of a Multilayer Agar-gel Tissue Phantom to Induce Thermal Effect of Traditional Moxibustion. J. Innovative Optical Health Sci. 2018, 11, 1850033.
  •  
  • 24. Vardaki, M. Z.; Kourkoumelis, N. Tissue Phantoms for Biomedical Applications in Raman Spectroscopy: A Review. Biomed. Eng. Comput. Biol. 2020, 11, DOI: 10.1177/117959770948100.
  •  
  • 25. Lai, P.; Xu, X.; Wang, L. V. Dependence of Optical Scattering From Intralipid in Gelatin-gel Based Tissue-mimicking Phantoms on Mixing Temperature and Time. J. Biomed. Opt. 2014, 19, 35002.
  •  
  • 26. Iizuka, M. N.; Sherar, M. D.; Vitkin, I. A. Optical Phantom Materials for Near Infrared Laser Photocoagulation Studies. Lasers Surg. Med. 1999, 25, 159-69.
  •  
  • 27. Geoghegan, R.; Santamaria, A.; Priester, A.; Zhang, L.; Wu, H.; Grundfest, W.; Marks, L.; Natarajan, S. A Tissue-mimicking Prostate Phantom for 980 nm Laser Interstitial Thermal Therapy. Int. J. Hyperthermia 2019, 36, 993-1002.
  •  
  • 28. Ashrafi, S. J.; Yazdian, F.; Zaremi, A. S. H.; Mohhamadnejad, J.; Dinarvand, R. Thermal Distribution of Silica Coated Gold Nano Rods in Tissue-Like Phantom as In Vitro Model for Plasmonic Photo Thermal Therapy. Biomed. Pharmacol. J. 2016, 9, 1189-1201.
  •  
  • 29. Bini, M. G.; Ignesti, A.; Millanta, L.; Olmi, R.; Rubino, N.; Vanni, R. The Polyacrylamide as a Phantom Material for Electromagnetic Hyperthermia Studies. IEEE Trans Biomed Eng 1984, 31, 317-22.
  •  
  • 30. Pogue, B. W.; Patterson, M. S. Review of Tissue Simulating Phantoms for Optical Spectroscopy, Imaging and Dosimetry. J. Biomed. Opt. 2006, 11, 041102.
  •  
  • 31. Lepore, M.; Delfino, I. Intralipid-based Phantoms for the Development of New Optical Diagnostic Techniques. Open. Biotechnol. J. 2019, 13, 163-172.
  •  
  • 32. Flock, S. T.; Jacques, S. L.; Wilson, B. C.; Star, W. M.; van Gemert, M. J. Optical Properties of Intralipid: a Phantom Medium for Light Propagation Studies. Lasers Surg. Med. 1992, 12, 510-519.
  •  
  • 33. Asadi, S.; Korganbayev, S.; Xu, W.; Mapanao, A. K.; Voliani, V.; Lehto, V. P.; Saccomandi, P. Experimental Evaluation of Radiation Response and Thermal Properties of NPs-Loaded Tissues-Mimicking Phantoms. Nanomaterials (Basel) 2022, 12, 945.
  •  
  • 34. Nourhashemi, M.; Mahmoudzadeh, M.; Wallois, F. Thermal Impact of Near-infrared Laser in Advanced Noninvasive Optical Brain Imaging. Neurophotonics 2016, 3, 015001.
  •  
  • 35. Pradyasti, A.; Kim, D. S.; Kim, M. H. Synthesis of Au@AgAuS Core–shell Hybrid Nanorods and Their Photocatalytic Application. Colloid and Interface Sci. Commun. 2022, 49, 100635.
  •  
  • 36. Pradyasti, A.; Hoang, H. T.; Lim, K. T.; Kim, M. H. Synthesis of Porous Ag–Ag2S@ Ag–Au Hybrid Nanostructures with Broadband Absorption Properties and Their Photothermal Conversion Application. J. Alloys Compos. 2022, 896, 163062.
  •  
  • 37. Choi, H.; Soeriawidjaja, B. F.; Lee, S. H.; Kwak, M. A Convenient Platform for Real-time Non-contact Thermal Measurement and Processing. Bull. Korean Chem. Soc. 2022, 43, 854-858.
  •  
  • 38. Zhao, X.; Zhao, H.; Wang, S.; Fan, Z.; Ma, Y.; Yin, Y.; Wang, W.; Xi, R.; Meng, M. A Tumor-Targeting Near-Infrared Heptamethine Cyanine Photosensitizer with Twisted Molecular Structure for Enhanced Imaging-Guided Cancer Phototherapy. J. Am. Chem. Soc. 2021, 143, 20828-20836.
  •  
  • 39. Nejabat, M.; Samie, A.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S. M. An Overview on Gold Nanorods as Versatile Nanoparticles in Cancer Therapy. J. Control. Release 2023, 354, 221-242.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(5): 678-685

    Published online Sep 25, 2023

  • 10.7317/pk.2023.47.5.678
  • Received on Jul 4, 2023
  • Revised on Jul 21, 2023
  • Accepted on Jul 21, 2023

Correspondence to

  • Minseok Kwak
  • Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University

  • E-mail: mkwak@pukyong.ac.kr