Article
  • Thermal and Mechanical Properties of Nano Silicon Carbide/Epoxy Composites by Surface Modification Using Oleic Acid, Imidazole, and Epoxy Silane
  • Kyung-Soo Sung , Hyerin Jang*, and Namil Kim*,†

  • Research & Development Center, Protavic Korea, Daejeon 34326, Korea
    *Department of Chemical Engineering, Hannam University, Daejeon 34054, Korea

  • 올레산, 이미다졸, 에폭시 실란 표면 처리에 따른 나노 탄화규소/에폭시 복합체의 열적, 기계적 특성
  • 성경수 · 장혜린* · 김남일*,†

  • 프로타빅코리아, *한남대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Kong, L.; Li, C.; Jiang, J.; Pecht, M. G. The Li-ion Battery Fire Hazards and Safety Strategies Cellulose Fiber. Energies 2018, 11, 2191.
  •  
  • 2. Wang, Q.; Mao, B.; Stoliarov, S. I.; Sun, J. A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies. Prog. Energy Combust. Sci. 2019, 73, 95-131.
  •  
  • 3. Sanker, S. B.; Baby, R. Phase Change Material Based Thermal Management of Lithium Ion Batteries: A Review on Thermal Performance of Various Thermal Conductivity Enhancers. J. Energy Storage 2022, 50, 104606.
  •  
  • 4. Yamada, Y.; Yanase, M.; Miura, D.; Chikuba, K. Novel Heatsink for Power Semiconductor Module Using High Thermal Conductivity Graphite. Microelectron. Reliab. 2016, 64, 484-488.
  •  
  • 5. Mimura, K.; Nakamura, Y.; Masaki, M.; Nishimura, T. Development of Resin Insulated Material with High Thermal Conductivity and Application to the Power Module. J. Photopolym. Sci. Technol. 2015, 28, 169-173.
  •  
  • 6. Chung, S.; Lee, J.; Jeong, J.; Kim, J.; Hong, Y. Substrate Thermal Conductivity Effect on Heat Dissipation and Lifetime Improvement of Organic Light-Emitting Diodes. Appl. Phys. Lett. 2009, 94, 253302.
  •  
  • 7. Park, J.; Ham, H.; Park, C. Heat Transfer Property of Thin-film Encapsulation for OLEDs. Org. Electron. 2011, 12, 227-233.
  •  
  • 8. Kargar, F.; Barani, Z.; Salgado, R.; Debnath, B.; Lewis, J. S.; Aytan, E.; Lake, R. K.; Balandin, A. A. Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. ACS Appl. Mater. Interfaces 2018, 10, 37555-37565.
  •  
  • 9. Zhang, G.; Xia, Y.; Wang, H.; Tao, Y.; Tao, G.; Tu, S.; Wu, H. A Percolation Model of Thermal Conductivity for Filled Polymer Composites. J. Compos. Mater. 2010, 44, 963-970.
  •  
  • 10. Pietrak, K.; Wisniewski, T. S. A Review of Models for Effective Thermal Conductivity of Composite Materials. J. Power Technol. 2015, 95, 14-24.
  •  
  • 11. Guerra, V.; Wan, C.; McNally, T. Thermal Conductivity of 2D Nano-Structured Boron Nitride (BN) and Its Composites with Polymers. Prog. Mater. Sci. 2019, 100, 170-186.
  •  
  • 12. Yu, C.; Zhang, J.; Tian, W.; Fan, X.; Yao, Y. Polymer Composites Based on Hexagonal Boron Nitride and Their Application in Thermally Conductive Composites. RCS Adv. 2018, 8, 21948.
  •  
  • 13. Zhou, Y.; Hyuga, H.; Kusano, D.; Yoshizawa, Y.; Hirao, K. A Tough Silicon Nitride Ceramic with High Thermal Conductivity. Adv. Mater. 2011, 23, 4563-4567.
  •  
  • 14. Shimamura, A.; Hotta, Y.; Hyuga, H.; Kondo, N.; Hirao, K. Effect of Amounts and Types of Silicon Nitride on Thermal Conductivity of Si3N4/Epoxy Resin Composite. J. Ceram. Soc. Japan 2015, 123, 908-912.
  •  
  • 15. Shen, D.; Zhan, Z.; Liu, Z.; Cao, Y.; Zhou, L.; Liu, Y.; Dai, W.; Nishimura, K.; Li, C.; Lin, C.; Jiang, N.; Yu, J. Enhanced Thermal Conductivity of Epoxy Composites Filled with Silicon Carbide Nanowires. Sci. Rep. 2017, 7, 2606.
  •  
  • 16. Xiao, C.; Chen, L.; Tang, Y.; Zhang, X.; Zheng, K.; Tian, X. Enhanced Thermal Conductivity of Silicon Carbide Nanowires (SiCw)/Epoxy Resin Composite with Segregated Structure. Compos. Appl. Sci. Manuf. Part A-Appl. S. 2019, 116, 98-105.
  •  
  • 17. Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal Conductivity of Polymer-based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41-85.
  •  
  • 18. Jasmee, S.; Omar, G.; Othaman, S. S. C.; Masripan, N. A.; Hamid, H. A. Interface Thermal Resistance and Thermal Conductivity of Polymer Composites at Different Types, Shapes, and Sizes of Fillers: a Review. Polym. Compos. 2021, 42, 2629-2652.
  •  
  • 19. Wie, J.; Kim, M.; Kim, J. Enhanced Thermal Conductivity of a Polysilazane-coated A-BN/epoxy Composite Following Surface Treatment with Silane Coupling Agents. Appl. Surf. Sci. 2020, 529, 147091.
  •  
  • 20. Miranda, A. T.; Bolzoni, L.; Barekar, N.; Huang, Y.; Shin, J.; Ko, S.; McKay, B. J. Processing, Structure and Thermal Conductivity Correlation in Carbon Fibre Reinforced Aluminum Metal Matrix Composites. Mater. Des. 2018, 156, 329-339.
  •  
  • 21. Hu, Y.; Chen, C.; Wen, Y.; Xue, Z.; Zhou, X.; Shi, D.; Hu, G.H.; Xie, X. Novel Micro-Nano Epoxy Composites for Electronic Packaging Application: Balance of Thermal Conductivity and Processability. Compos. Sci. Technol. 2021, 209, 108760.
  •  
  • 22. Gao, Z.; Zhao, L. Effect of Nano-Fillers on the Thermal Conductivity of Epoxy Composites with Micro-Al2O3 Particles. Mater. Des. 2015, 66, 176-182.
  •  
  • 23. Tanaka, T.; Kozako, M.; Okamoto, K. Toward High Thermal Conductivity Nano Micro Epoxy Composites with Sufficient Endurance Voltage. J. Int. Counc. Electri. Eng. 2012, 2, 90-98.
  •  
  • 24. Hou, J.; Li, G.; Yang, N.; Qin, L.; Grami, M. E.; Zhang, Q.; Wang, N.; Qu, X. Preparation and Characterization of Surface Modified Boron Nitride Epoxy Composites with Enhanced Thermal Conductivity. RCS Adv. 2014, 4, 44282-44290.
  •  
  • 25. Pan, C.; Kou, K.; Jia, Q.; Zhang, Y.; Wu, G.; Ji, T. Improved Thermal Conductivity and Dielectric Properties of hBN/PTFE Composites via Surface Treatment by Silane Coupling Agent. Composistes Part B: Eng. 2017, 111, 83-90.
  •  
  • 26. Kim, K.; Ju, H.; Kim, J. Surface Modification of BN/Fe3O4 Hybrid Particle to Enhance Interfacial Affinity for High Thermal Conductive Material. Polymer 2016, 91, 74-80.
  •  
  • 27. Yao, Y.; Zhu, X.; Zeng, X.; Sun, R.; Xu, J. B.; Wong, C. P. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites. ACS Appl. Mater. Interfaces 2018, 10, 9669-9678.
  •  
  • 28. Ahn, K.; Kim, K.; Kim, J.; Cho. W. Thermal and Electrical Properties of Surface-treated Copper Nanowire/Epoxy Composites. Polym. Korea 2015, 39, 961-966.
  •  
  • 29. Wu, Y.; Xue, Y.; Qin, S.; Liu, D.; Wang, X.; Hu, X.; Li, J.; Wang, X.; Bando, Y.; Golberg, D.; Chen, Y.; Gogotsi, Y.; Lei, W. BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. ACS Appl. Mater. Interfaces 2017, 9, 43163-43170.
  •  
  • 30. Wang, M.; Jiao, Z.; Chen, Y.; Hou, X.; Fu, L.; Wu, Y.; Li, S.; Jiang, N.; Yu, J. Enhanced Thermal Conductivity of Poly(vinylidene fluoride)/Boron Nitride Nanosheet Composites at Low Filler Content. Compos. Appl. Sci. Manuf. Part A-Appl. S. 2018, 109, 321-329.
  •  
  • 31. Xiang, A.; Liu, D.; Tian, H.; Rajulu, A. V. Improved Mechanical and Wear Resistance Properties of Silicon Carbide/Poly (Vinyl Alcohol) Composites by Silane Coupling Agent. Polym. Compos. 2018, 3, 3849-3857.
  •  
  • 32. Ozen, M.; Demircan, G.; Kisa, M.; Acikgoz, A. Ceyhan, G. Thermal Properties of Surface-modified Nano-Al2O3/Kevlar Fiber/Epoxy Composites. Mater. Chem. Phys. 2022, 278, 125689.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(6): 786-792

    Published online Nov 25, 2023

  • 10.7317/pk.2023.47.6.786
  • Received on Aug 2, 2023
  • Revised on Aug 19, 2023
  • Accepted on Aug 24, 2023

Correspondence to

  • Namil Kim
  • Department of Chemical Engineering, Hannam University, Daejeon 34054, Korea

  • E-mail: nikim@hnu.kr