Article
  • Stress Relaxation Behaviors of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
  • Jinkyu Park, Youngwook Kim, Yunjae Jang*, Minho Jung*, Eunhye Lee*, and Ho-Jong Kang

  • Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Korea
    *CJ Cheiljedang Corp. 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

  • Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)의 응력이완 거동
  • 박진규 · 김영욱 · 장윤재* · 정민호* · 이은혜* · 강호종

  • 단국대학교고분자공학과, *CJ제일제당

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Nikodinovic-Runic, J.; Guzik, M.; Kenny, S. T.; Babu, R.; Werker, A.; Connor, K. E. Carbon-rich Wastes as Feedstocks for Biodegradable Polymer (polyhydroxyalkanoate) Production Using Bacteria. Adv. Appl. Microbiol. 2013, 84, 139-200.
  •  
  • 2. Suzuki, M.; Tachibana, Y.; Kasuya, K. I. Biodegradability of Poly (3-hydroxyalkanoate) and Poly(ε-caprolactone) via Biological Carbon Cycles in Marine Environments. Polymer J. 2021, 53, 47-66.
  •  
  • 3. Holmes, P. A. Applications of PHB-A Microbially Produced Biodegradable Thermoplastics. Phys. Technol. 1985, 16, 32-36.
  •  
  • 4. Hong, S. G.; Hsu, H. W.; Ye, M. T. Thermal Properties and Applications of Low Molecular Weight Polyhydroxybutyrate. J. Therm. Anal. Calorim. 2013, 111, 1243-1250.
  •  
  • 5. Weihua, K.; He, Y.; Asakawa, N.; Inoue, Y. Effect of Lignin Particles as a Nucleating Agent on Crystallization of Poly(3-hydroxybutyrate). J. Appl. Polym. Sci. 2004, 94, 2466-2474.
  •  
  • 6. Abdelwahab, M. A.; Flynn, A.; Chiou, B. S.; Imam, S.; Orts, W.; Chiellini, E. Thermal, Mechanical and Morphological Characterization of Plasticized PLA–PHB Blends. Polym. Degra. Stabi. 2012, 97, 1822-1828.
  •  
  • 7. Sadeghi, D.; Karbasi, S.; Razavi, S.; Mohammadi, S.; Shokrgozar, M. A.; Bonakdar, S. Electrospun Poly(hydroxybutyrate)/Chitosan Blend Fibrous Scaffolds for Cartilage Tissue Egineering. J. Appl. Polym. Sci. 2016, 133, 44171.
  •  
  • 8. Kamiya, N.; Yamamoto, Y.; Inoue, Y.; Chujo, R.; Doi, Y. Microstructure of Bacterially Synthesized Poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules. 1989, 22, 1676-1682.
  •  
  • 9. Doi, Y.; Segawa, A.; Kunioka, M. Biosynthesis and Characterization of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes Eutrophus. Intern. J. Biol. Macromol. 1990, 12, 106-111.
  •  
  • 10. Laird, K. CJ Bio has big plans for PHA, Sustainable Plastics 2022 Oct. https://www.sustainableplastics.com/news/cj-bio-has-big-plans-pha.
  •  
  • 11. Jo, M.; Jang, Y.; Lee, E.; Shin, S.; Kang, H. J. Effect of 4-Hydroxybutyrate Content on Physical Properties of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Korea. 2022, 46, 551-558.
  •  
  • 12. Kwon, S.; Zhang, T.; Jang, Y.; Jung, M.; Lee, E.; Kang, H. J. Non-isothermal Crystallization of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Korea. 2022, 46, 661-670.
  •  
  • 13. Zhu, Z.; Dakwa, P.; Tapadia, P.; Whitehouse, R. S.; Wang, S. Q. Rheological Characterization of Flow and Crystallization Behavior of Microbial Synthesized Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules. 2003, 36, 4891-4897.
  •  
  • 14. Zhang, T.; Jang, Y.; Lee, E.; Shin, S.; Kang, H. J. Supercritical CO2 Foaming of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polymers. 2022, 14, 2018.
  •  
  • 15. Parulekar, Y.; Mohanty, A.K.; Extruded Biodegradable Cast Films from Polyhydroxyalkanoate and Thermoplastic Starch Blends: Fabrication and Characterization. Macromol. Mate. Eng. 2007, 292, 1218-1228.
  •  
  • 16. Bugnicourt, E.; Cinelli, P., Lazzeri, A.; Alvarez, V. A. Polyhydroxyalkanoate (PHA): Review of Synthesis, Characteristics, Processing and Potential Applications in Packaging. Express Polym. Lett. 2014, 8, 791-808.
  •  
  • 17. Brigham, C. J.; Sinskey, A. J.; Applications of Polyhydroxyalkanoates in the Medical Industry. Intern. J. Biotechnol. Wellness Ind. 2012, 1, 52.
  •  
  • 18. Tobolsky, A. V. Stress Relaxation Studies of the Viscoelastic Properties of Polymers. J. Appl. Phys. 1956, 27, 673-685.
  •  
  • 19. Papanicolaou, G. C.; Zaoutsos, S. P. Viscoelastic Constitutive Modeling of Creep and Stress Relaxation in Polymers and Polymer Matrix Composites. Creep and Fatigue in Polymer Matrix Composites; Rui, M. G., Ed.: Woodhead Publishing: Oxford, 2019, pp 3-59.
  •  
  • 20. Renaud, F.; Dion, J. L.; Chevallier, G.; Tawfiq, I.; Lemaire, R. A New Identification Method of Viscoelastic Behavior: Application to the Generalized Maxwell Model. Mech. Syst. Signal Process. 2011, 25, 991-1010.
  •  
  • 21. Jozwiak, B.; Orczykowska, M.; Dziuvubaju, M. Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization. PLoS One. 2015, e0143090.
  •  
  • 22. Vieira, A. C.; Guedes R. M.; Tita V. Constitutive Modeling of Biodegradable Polymers: Hydrolytic Degradation and Time-dependent Behavior. Intern. J. Sol. Stru. 2014, 51, 1164-1174.
  •  
  • 23. Huong, K. H.; Sevakumaran, V.; Amirul, A. A. P (3HB-co-4HB) as High Value Polyhydroxyalkanoate: Its Development Over Recent Decades and Current Advances. Crit. Rev. Biotechnol. 2021, 41, 474-490.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(1): 77-85

    Published online Jan 25, 2024

  • 10.7317/pk.2024.48.1.77
  • Received on Sep 30, 2023
  • Revised on Oct 28, 2023
  • Accepted on Nov 24, 2023

Correspondence to

  • Ho-Jong Kang
  • Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Korea

  • E-mail: hjkang@dankook.ac.kr