Article
  • Supercritical CO2 Foaming for Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Poly(lactic acid) Blends
  • Youngwook Kim, Jinkyu Park, Tao Zhang, Yunjae Jang*, Eunhye Lee*, and Ho-Jong Kang

  • Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Korea
    *CJ Cheiljedang Corp. 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

  • Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Poly(lactic acid) 블렌드의 초임계 이산화탄소 발포
  • 김영욱 · 박진규 · 장타오 · 장윤재* · 이은혜* · 강호종

  • 단국대학교 고분자공학과, *CJ 제일제당

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Tsang, Y. F.; Kumar, V.; Samadar, P.; Yang, Y.; Lee, J.; Ok, Y. S.; Jeon, Y. J. Production of Bioplastic Through Food Waste Valorization. Environ. Int. 2019, 127, 625-644.
  •  
  • 2. Mohanty, A. K.; Misra, M.; Drzal, L. T. Sustainable Bio-composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polym. Environ. 2002, 10, 19-26.
  •  
  • 3. Vostrejs, P.; Adamcova, D.; Vaverkova, M. D.; Enev, V.; Kalina, M.; Machovsky, M.; Sourkov, M.; Marovaa, I.; Kovalcik, A. Active Biodegradable Packaging Films Modified with Grape Seeds Lignin, RSC Adv., 2020, 10, 29202-29213.
  •  
  • 4. Modi, S.; Koelling, K.; Vodovotz, Y. Assessment of PHB with Varying Hydroxyvalerate Content for Potential Packaging Applications. Eur. Polym. J. 2011, 47, 179-186.
  •  
  • 5. Mahishi, L. H.; Tripathia, G.; Rawala, S. K. Poly(3-hydroxybutyrate) (PHB) Synthesis by Recombinant Escherichia coli Harbouring Streptomyces Aureofaciens PHB Biosynthesis Genes: Effect of Various Carbon and Nitrogen Sources. Microbiol. Res. 2003, 158, 19-27.
  •  
  • 6. Chen, G. Q. A Microbial Polyhydroxyalkanoates (PHA) Based Bio- and Materials Industry. Chem. Soc. Rev. 2009, 38, 2434-2446.
  •  
  • 7. Puppi, D.; Pecorini, G.; Chiellini, F. Biomedical Processing of Polyhydroxyalkanoates. Bioengineering, 2019, 6, 108-127.
  •  
  • 8. Gamon, G.; Evon, P.; Rigal, L. Twin-screw Extrusion Impact on Natural Fibre Morphology and Material Properties in Poly(lactic acid) Based Biocomposites. Ind. Crops. Prod. 2013, 46, 173-185.
  •  
  • 9. Carrasco, F.; Pagès, P.; Gámez-Pérez, J.; Santana, O. O.; Maspoch, M. L. Processing of Poly(lactic acid): Characterization of Chemical Structure, Thermal Stability and Mechanical Properties, Polym. Degrad. Stab. 2010, 95, 116-125.
  •  
  • 10. Li, G.; Zhao, M. H.; Xu, F.; Yang, B.; Li, X. Y.; Meng, X. X.; Teng, L. S.; Sun, F. Y.; Li, Y. X. Synthesis and Biological Application of Polylactic Acid. Molecules,2020, 25, 5023-5040.
  •  
  • 11. Matta, A. K.; Umamaheswara Rao R.; Sumana, K. N. S.; Rambabu, V. Preparation and Characterization of Biodegradable PLA/PCL Polymeric Blends. Proc. Mater. Sci. 2014,6, 1266-1270.
  •  
  • 12. Meng, B.; Deng, J. J.; Liu, Q.; Wu, Z. H.; Yang, W. Transparent and Ductile Poly(lactic acid)/poly(butyl acrylate)(PBA) Blends: Structure and Properties. Eur. Polym. J. 2012,48, 127-135.
  •  
  • 13. Su, S.; Kopitzky, R.; Tolga, S.; Kabasci, S. Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review, Polymers, 2019, 11, 1193-1213.
  •  
  • 14. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Rheological, Morphological, and Interfacial Properties of Compatibilized PLA/PBAT Blends, Rheol. Acta , 2014,53, 501-517.
  •  
  • 15. Thomas, S.; Shumilova, A. A.; Kiselev, E. G.; Baranovsky, S. V.; Vasiliev, A. D.; Nemtsev, I. V.; Kuzmin, A. P.; Sukovatyi, A. G.; Avinash, R. P.; Volova, T. G.; Thermal, Mechanical and Biodegradation Studies of Biofiller Based Poly-3-hydroxybutyrate Biocomposites. Int. J. Biol. Macromol. 2020, 155, 1373-1384.
  •  
  • 16. Ahankari, S. S.; Mohanty, A. K.; Misra, M. Mechanical Behaviour of Agro-residue Reinforced Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), (PHBV) Green Composites: A Comparison with Traditional Polypropylene Composites. Compos. Sci. Technol. 2011,71, 653-657.
  •  
  • 17. Al-Kaddo, K. B.; Mohamad, F.; Murugan, P.; Tan, J. S.; Sudesh, K.; Samian, M. R. Production of P(3HB-co-4HB) Copolymer with High 4HB Molar Fraction by Burkholderiacontaminans Kad1 PHA Synthase. Biochem. Eng. J. 2020, 153, 107394-107400.
  •  
  • 18. Che, X. M.; Ye, H. M.; Chen, G. Q. Effects of Uracil on Crystallization and Rheological Property of Poly(R-3-hydroxybutyrate-co-4-hydroxybutyrate). Compos. Part A Appl. Sci. Manuf. 2018, 109, 141-150.
  •  
  • 19. Tripathi, L.; Wu, L. P.; Chen, J. C.; Chen, G. Q. Synthesis of Diblock Copolymer Poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation Weakened Pseudomonas Putida KT2442, Microb. Cell Factories 2012, 11, 44-54.
  •  
  • 20. Liao, Q.; Tsui, A.; Billington, S.; Frank, C. W. Extruded Foams from Microbial Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Its Blends with Cellulose Acetate Butyrate. Polym. Eng. Sci. 2012, 52, 1495-1508.
  •  
  • 21. Wright, Z. C.; Frank, C. W. Increasing Cell Homogeneity of Semicrystalline, Biodegradable Polymer Foams with a Narrow Processing Window via Rapid Quenching. Polym. Eng. Sci. 2014, 54, 2877-2886.
  •  
  • 22. Kan, A.; Demirboğa, R. A New Technique of Processing for Waste-expanded Polystyrene Foams as Aggregates. J. Mater. Process. Tech. 2009,209, 2994-3000.
  •  
  • 23. Rainglet, B.; Chalamet, Y.; Bounor-Legaré, V.; Delage, K.; Forest, C.; Cassagnau, P. Polypropylene Foams Under CO2 Batch Conditions: From Formulation and Rheological Modeling to Cell-growth Simulation. Polymer 2021,218, 123496-123504.
  •  
  • 24. Yeh, S. K.; Liu, Y. C.; Chu, C. C.; Chang, K. C.; Wang, S. F. Mechanical Properties of Microcellular and Nanocellular Thermoplastic Polyurethane Nanocomposite Foams Created Using Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2017, 56, 8499-8507.
  •  
  • 25. Moigne, N. L.; Sauceau, M.; Benyakhlef, M.; Jemai, R.; Benezet, J.C.; Rodier, E.; Lopez-Cuesta, J. M.; Fages, J. Foaming of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organo-clays Nano-biocomposites by a Continuous Supercritical CO2 Assisted Extrusion Process. Eur. Polym. J. 2014, 61, 157-171.
  •  
  • 26. Takahashi, S.; Hassler, J. C.; Kiran, E. Melting Behavior of Biodegradable Polyesters in Carbon Dioxide at High Pressures. J. Supercrit. Fluid. 2012, 72, 278-287.
  •  
  • 27. Ke, J.; Zhang, L.; Li, D. L.; Bao, J. B.; Wang, Z. B. Foaming of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Supercritical Carbon Dioxide: Foaming Performance and Crystallization Behavior. ACS Omega 2020,5, 9839-9845.
  •  
  • 28. Sun, X. F.; Turng, L. S. Novel Injection Molding Foaming Approaches Using Gas-laden Pellets with N2, CO2, and N2 + CO2 as the Blowing Agents. Polym. Eng. Sci. 2014, 54, 899-913.
  •  
  • 29. Hossieny, N.; Ameli, A.; Park, C. B. Characterization of Expanded Polypropylene Bead Foams with Modified Steam-chest Molding. Ind. Eng. Chem. Res. 2013, 52, 8236-8247.
  •  
  • 30. Gong, P. J.; Zhai, S.; Lee, R.; Zhao, C. X.; Buahom, P.; Li, G. X.; Park, C. B. Environmentally Friendly Polylactic Acid-based Thermal Insulation Foams Blown with Supercritical CO2. Ind. Eng. Chem. Res. 2015, 57, 5464-5471.
  •  
  • 31. Yang, Y. C.; Li, X. Y.; Zhang, Q. Q.; Xia, C. H.; Chen, C.; Chen, X. H.; Yu, P. Foaming of Poly(lactic acid) with Supercritical CO2: The Combined Effect of Crystallinity and Crystalline Morphology on Cellular Structure. J. Supercrit. Fluid. 2019, 145, 122-132.
  •  
  • 32. Nofar, M.; Park, C. B.; Poly(lactic acid)foaming, Prog. Polym. Sci. 2014, 39, 1721-1741.
  •  
  • 33. Standau, T.; Zhao, C. J.; Castellon, S. M.; Bonten, C.; Altstadt, V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers 2019, 11, 306-344.
  •  
  • 34. Szegda, D.; Duangphet, S.; Song, J.; Tarverdi, K. Extrusion Foaming of PHBV. J. Cell. Plas. 2014,50, 145-162.
  •  
  • 35. Javadi, A.; Srithep, Y.; Clemons, C. C.; Turng, L. S.; Gong, S. Q. Processing of Poly(hydroxybutyrate-co-hydroxyvalerate)-based Bionanocomposite Foams Using Supercritical Fluids. J. Mater. Res. 2012, 27, 1506-1517.
  •  
  • 36. Zhang, T.; Jang, Y.; Lee, E.; Shin, S.; Kang, H. J. Supercritical CO2 foaming of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polymers 2022, 14, 2018-2032.
  •  
  • 37. Villalobos, M.; Awojulu, A.; Greeley, T.; Turco, G.; Deeter, C. Oligomeric Chain Extenders for Economic Reprocessing and Recycling of Condensation Plastics. Energy 2006, 31, 3227-3234.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(2): 179-187

    Published online Mar 25, 2024

  • 10.7317/pk.2024.48.2.179
  • Received on Oct 20, 2023
  • Revised on Nov 12, 2023
  • Accepted on Nov 25, 2023

Correspondence to

  • Ho-Jong Kang
  • Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Korea

  • E-mail: hjkang@dankook.ac.kr