Article
  • Nanoporous Polypropylene Membranes Prepared by a New Crystallization-based Method
  • Sumin Chu and Jonghwi Lee

  • Department of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • 새로운 결정화 기반 방법으로 제조된 나노다공성 폴리프로필렌 막
  • 추수민 · 이종휘

  • 중앙대학교 공과대학 화학신소재공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Liang, H.-Q.; Ji, K.-J.; Zha, L.-Y.; Hu, W.-B.; Ou, Y.; Xu, Z.-K., Polymer Membranes with Vertically Oriented Pores Constructed by 2D Freezing at Ambient Temperature. ACS Appl. Mater. Interfaces. 2016, 8, 14174-14181.
  •  
  • 2. Yamaguchi, A.; Uejo, F.; Yoda, T.; Uchida, T.; Tanamura, Y.; Yamashita, T.; Teramae, N., Self-assembly of a Silica-surfactant Nanocomposite in a Porous Alumina Membrane. Nature Materials. 2004, 3, 337-341.
  •  
  • 3. Xu, C.-Y.; Inai, R.; Kotaki, S.; Ramakrishna, S., Aligned Biodegradable Nanofibrous Structure: a Potential Scaffold for Blood Vessel Engineering. Biomaterials. 2004, 25, 877-886.
  •  
  • 4. Bicy, K.; Kalarikkal, N.; Stephen, A.; Rouxel, D.; Thomas, S., Facile Fabrication of Microporous Polypropylene Membrane Separator for Lithium-ion Batteries. Materials Chemistry and Physics. 2020, 255, 123473.
  •  
  • 5. Himma, N.-F.; Anisah, S.; Prasetya, N.; Wenten, I.-G., Advanced in Preparation, Modification, and Application of Polypropylene Membrane. J. Polym. Eng. 2016, 36, 329-362.
  •  
  • 6. Matsuyama, H.; Berghmans, S.; Lloyd, D.-R., Formation of Hydrophilic Microporous Membranes via Thermally Induced Phase Separation. J. Membr. Sci. 1998, 142, 213-224.
  •  
  • 7. Takao, S.; Rajabzadeh, S.; Otsubo, C.; Hamada, T.; Kato, N.; Nakagawa, K.; Shintani, T.; Matsuyama, H.; Yoshioka, T., Preparation of Microfiltration Hollow Fiber Membranes from Cellulose Triacetate by Thermally Induced Phase Separation. ACS Omega. 2022, 7, 33783-33792.
  •  
  • 8. Yan, S.-Y.; Wang, Y.-J.; Mao, H.; Zhao, Z.-P., Fabrication of PP Hollow Fiber Membrane via TIPS Using Environmentally Friendly Diluents and its CO2 Degassing Performance. RCS Advances. 2019, 9, 19164-19170.
  •  
  • 9. Yang, T.-F.; Wan, L.-S.; Xu, Z.-K., Surface Engineering of Microporous Polypropylene Membrane for Antifouling: A Mini-Review. J. Adhesion Sci. Technology. 2011, 25, 245-260.
  •  
  • 10. Chung, T.-C.; Lee, S.-H., New Hydrophilic Polypropylene Membranes; Fabrication and Evaluation. J. Appl. Polym. Sci. 1997, 64, 567-575.
  •  
  • 11. Maddah, H.-A., Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016, 6, 1-11.
  •  
  • 12. Ismail, H.; Suryadiansyah, Thermoplastic Elastomers Based on Polypropylene/naturl Rubber and Polypropylene/recycle Rubber Blends. Polym. Test. 2002, 21, 389-395.
  •  
  • 13. Benmesli, S.; Riahi, F., Dynamic Mechanical and Thermal Properties of a Chemically Modified Polypropylene/natural Rubber Thermoplastic Elastomer Blend. Polym. Test. 2014, 36, 54-61.
  •  
  • 14. Kim, K.-J.; Fane, A.-G.; Fell, C.-J.-D., The Effect of Langmuir-blodgett Layer Pretreatment on the Performance of Ultrafiltration Membranes. J. Memb. Sci. 1989, 43, 187-204.
  •  
  • 15. Yasuda, H.; Marsh, H.-C.; Brandt, E.-S.; Reilley, C.-N., Preparation of Composite Reverse Osmosis Membrane by Plasma Polymerization of Organic Comounds. IV. Influence of Plasma-polymer (substrate) Interaction. J. Appl. Polym. Sci. 1976, 20, 543-555.
  •  
  • 16. Sharama, A.-K.; Millich, F.; Hellmuth, E.-W., Wettability of Glow Discharge Polymers. J. Appl. Polym. Sci. 1981, 26, 2205-2210.
  •  
  • 17. Lai, J.-Y.; Chou, C.-C., Pasma-Modified Nylon 4 Membrane for Dialysis. J. Appl. Polym. Sci. 1989, 37, 1465-1480.
  •  
  • 18. Lee, S.; Lee, C. C.; Kim, H.; Lee, J. Water-pumping and Purifying Hydrogels Driven by Diurnal Temperature Variation. Appl. Mater. Today. 2022, 27, 101404.
  •  
  • 19. Seo, J.; Lee, N.; Lee, J. Ordered Submicrometer Structures Developed by Directional Evaporative Crystallization of Acetaminophen in the Presence of Polymers. Cryst. Growth Des. 2022, 22, 5835-5844.
  •  
  • 20. Lee, M. K.; Lee, J. Fabrication of Ferroelectric Polymer Nanocrystals with Tunable Morphologies. Cryst. Growth Des. 2013, 13, 671-678.
  •  
  • 21. Bick, K.; Shruti, S.; Anu, P.-P.; Anu, A.-S.; Nandakumar, K.; Arul, M.-S.; Geethamma, V.-G.; Didier, R.; Sabu, T. Highly Lithium ion Conductive, Al2O3 Decorated Electrospun P(VDF-TrFE) Membranes for Lithium ion Battery Separators. New J. Chem. 2018, 42, 19505-19520.
  •  
  • 22. Kerakra, S.; Bouhelal, S.; Poncot, M., Study of Na-Montmorillonite-Polyamide Fiber/Polypropylene Hybrid Compoiste Prepared by Reactive Melt Mixing. Int. J. Polym. Sci. 2017, 3920524.
  •  
  • 23. Bick, K.; Anu, P.-P.; Nandakumar, K.; Arul, M.-S.; Geethamma, V.-G.; Didier, R.; Sabu, T., Effects of Nanofillers on Morphology and Surface Wetting of Microporous Polypropylene Composite Membranes. Materials Chemistry and Physics. 2021, 257, 123742.
  •  
  • 24. Ramirez-Martinez, M.; Aristizabal, S.-L.; Szekely, G.; Nunes, S.-P.; Bio-based Solvents for Polyolefin Dissolution and Membrane Fabrication: from Plastic Waste to Value-added Materials. Green Chem. 2023, 25, 966-977.
  •  
  • 25. Wang, L.; Liu, Q.; Wu, X.; Xu, S., Study of Crystallization Behavior of Polypropylene Induced by Nucleating Agent. J. Phys.: Conf. Ser. 2021, 2076, 012046.
  •  
  • 26. Kim, B.; Lee, J., Macroporous PVDF/TiO2 Membranes with Three-dimensionally Interconnected Pore Structures Produced by Directional Melt Crystallization. Chem. Eng. J. 2016, 301, 158-165.
  •  
  • 27. Kim, J.; Cho, Y.; Kim, S.; Lee J., 3D Cocontinuous Composites of Hydrophilic and Hydrophobic Soft Materials: High Modulus and Fast Actuation Time. ACS Macro Lett. 2017, 6, 1119-1123.
  •  
  • 28. Raja, M.; Stephan, A.-M., Natural, Biodegradable and Flexible Egg Shell Membranes as Separators for Lithium-ion Batteries. RCS Adv. 2014, 4, 58546-58552.
  •  
  • 29. Raja, M.; Sanjeev, G.; Kumar, T.-P.; Stephan, A.-M., Lithium Aluminate-based Ceramic Membranes as Separators for Lithium-ion Batteries. Ceram. Int. 2015, 41, 3045-3050.
  •  
  • 30. Fischer, C.; Drummer, D., Crystallization and Mechanical Properties of Polypropylene under Processing-Relevant Cooling Conditions with Respect to Isothermal Holding Time. Int. J. Polym. Sci. 2016, 5450708.
  •  
  • 31. Zhang, T.; Jang, Y.; Jung, M.; Lee, E.; Kang, H. J., Isothermal Crystallization of Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] Mixtures. Macromol. Res. 2023, 443-453.
  •  
  • 32. Alotaibi, B. M.; Atta, A.; Atta, M. R.; Abdeltwab, E.; Abdel-Hamid, M. M., Low Energy Irradiation Induced Effects on the Surface Characteristics of Polydimethylsiloxane Polymeric Films. Macromol. Res. 2023,31, 53-63.
  •  
  • 33. Pekdemir, M. E.; Kök, M.; Cherkezova, A., Poly(vinyl chloride) and Poly(ethylene glycol) Binary Blend Films: a Study of Thermal and Shape Memory Properties. Macromol. Res. 2023, 511-518.
  •  
  • 34. Salimi, A.; Ahmadi, S.; Faramarzi, M.; Faghihi, J., Reactive Blending of Polylactic Acid/polyethylene Glycol Toward Biodegradable Film. Macromol. Res. 2023, 873-881.
  •  
  • 35. Boominathan, S.; Suyambulingam, I.; Narayanaperumal, S.; Divakaran, D.; Senthamaraikannan, P.; Siengchin, S., Comprehensive Characterization of Novel Bioplasticizer from Pandanus Tectorius Leaves: a Sustainable Biomaterial for Biofilm Applications. Macromol. Res. 2023, 1061-1075.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(2): 211-216

    Published online Mar 25, 2024

  • 10.7317/pk.2024.48.2.211
  • Received on Nov 23, 2023
  • Revised on Dec 13, 2023
  • Accepted on Dec 14, 2023

Correspondence to

  • Jonghwi Lee
  • Department of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • E-mail: jong@cau.ac.kr