Article
  • Filamentous Virus-Templated Nickel Hydroxide Nanoplates as Novel Electrochemical Pseudocapacitor Materials
  • Manoj Mayaji Ovhal , Hock Beng Lee , Neetesh Kumar , Jin-Woo Oh* , and Jae-Wook Kang

  • Department of Flexible and Printable Electronics, LANL-JBNU Engineering Instutute-Korea,
    Jeonbuk National University, Jeonju 54896, Korea
    *Department of Nano Fusion Technology, Department of Nanoenergy Engineering,
    Research Center for Energy Convergence and Technology, Pusan National University, Busan 46241, Korea

  • 섬유상 바이러스를 이용한 니켈 수화물 나노플레이트 제조 및 전기화학 의사커패시터 특성
  • Manoj Mayaji Ovhal · Hock Beng Lee · Neetesh Kumar · 오진우* · 강재욱

  • 전북대학교 유연인쇄전자공학과, *부산대학교 나노에너지공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Khalil, A. S.; Ferrer, J. M.; Brau, R. R.; Kottmann, S. T.; Noren, C. J.; Lang, M. J.; Belcher, A. M. Single M13 Bacteriophage Tethering and Stretching. Proc. Natl. Acad. Sci. USA 2007,104, 4892-4897.
  •  
  • 2. Chung, W. J.; Oh, J. W.; Kwak, K.; Lee, B. Y.; Meyer, J.; Wang, E.; Hexemer, A.; Lee, S. W. Biomimetic Self-templating Supramolecular Structures. Nature 2011 478, 364-368.
  •  
  • 3. Mao, C.; Wang, F.; Cao, B. Controlling Nanostructures of Mesoporous Silica Fibers by Supramolecular Assembly of Genetically Modifiable Bacteriophages. Angew. Chem. 2012, 124, 6517-6521.
  •  
  • 4. Moon, J.-S.; Kim, W.-G.; Kim, C.; Park, G.-T.; Heo, J.; Yoo, S. Y.; Oh, J.-W. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities. Mini Rev. Org. Chem. 2015, 12, 271-281.
  •  
  • 5. Seo, Y.; Manivannan, S.; Kang, I.; Lee, S. W.; Kim, K. Gold Dendrites Co-deposited with M13 Virus as a Biosensor Platform for Nitrite Ions. Biosens. Bioelectron. 2017, 94, 87-93.
  •  
  • 6. Arter, J. A.; Taggart, D. K.; McIntire, T. M.; Penner, R. M.; Weiss, G. A. Virus-PEDOT Nanowires for Biosensing. Nano. Lett. 2010, 10, 4858-4862.
  •  
  • 7. Lee, B.; Ko, Y.; Kwon, G.; Lee, S.; Ku, K.; Kim, J.; Kang, K. Exploiting Biological Systems: Toward Eco-Friendly and High-Efficiency Rechargeable Batteries. Joule 2018, 2, 61-75.
  •  
  • 8. Lee, H. B.; Kim, W. G.; Lee, M.; Lee, J. M.; He, S.; Kumar, N.; Devaraj, V.; Choi, E. J.; Jeon, I.; Song, M.; Oh, J.-W. Gap Plasmon of Virus-Templated Biohybrid Nanostructures Uplifting the Performance of Organic Optoelectronic Devices. Adv. Opt. Mater. 2020, 8, 1-8.
  •  
  • 9. Nam, K. T.; Kim, D.; Yoo, P. J.; Chiang, C.-Y.; Meethong, N.; Hammond, P. T.; Chiang, Y.; Belcher, A. M. Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes. Science 2006, 312, 885-888.
  •  
  • 10. Parveen, N.; Cho, M. H. Self-assembled 3D Flower-like Nickel Hydroxide Nanostructures and Their Supercapacitor Applications. Sci. Rep. 2016,6, 2-11.
  •  
  • 11. Ginting, R. T.; Ovhal, M. M.; Kang, J.-W. A Novel Design of Hybrid Transparent Electrodes for High Performance and Ultra-Flexible Bifunctional Electrochromic-Supercapacitors. Nano Energy 2018, 53, 650-657.
  •  
  • 12. Ouyang, J.; Xu, Q.; Chu, C. W.; Yang, Y.; Li, G.; Shinar, J. On the Mechanism of Conductivity Enhancement in Poly(3,4- ethylenedioxythiophene):poly(styrene sulfonate) Film Through Solvent Treatment. Polymer (Guildf) 2004, 45, 8443-8450.
  •  
  • 13. Zhao, W.; Jiang, M.; Wang, W.; Liu, S.; Huang, W.; Zhao, Q. Flexible Transparent Supercapacitors: Materials and Devices. Adv. Funct. Mater. 2021, 31, 2009136.
  •  
  • 14. Li, T.; Dang, N.; Zhang, W.; Liang, W.; Yang, F. Determining the Degree of [001] Preferred Growth of Ni(OH)2 Nanoplates. Nanomaterials 2018,8, 1-8.
  •  
  • 15. Ede, S. R.; Anantharaj, S.; Kumaran, K. T.; Mishra, S.; Kundu, S. One-step Synthesis of Ni/Ni(OH)2 Nanosheets (NSs) and Their Application in Asymmetric Supercapacitors. RSC Adv. 2017, 7, 5898-5911.
  •  
  • 16. Singu, B. S.; Male, U.; Hong, S. E.; Yoon, K. R. Synthesis and Performance of Nickel Hydroxide Nanodiscs for Redox Supercapacitors. Ionics (Kiel) 2016, 22, 1485-1491.
  •  
  • 17. Jansi Rani, B.; Dhivya, N.; Ravi, G.; Zance, S. S.; Yuvakkumar, R.; Hong, S. I. Electrochemical Performance of β-Nis@Ni(OH)2 Nanocomposite for Water Splitting Applications. ACS Omega 2019, 4, 10302-10310.
  •  
  • 18. Zhang, C.; Higgins, T. M.; Park, S. H.; O’Brien, S. E.; Long, D.; Coleman, J. N.; Nicolosi, V. Highly Flexible and Transparent Solid-state Supercapacitors Based on RuO2/PEDOT:PSS Conductive Ultrathin Films. Nano Energy 2016, 28, 495-505.
  •  
  • 19. Urso, M.; Torrisi, G.; Boninelli, S.; Bongiorno, C.; Priolo, F.; Mirabella, S. Ni(OH)2@Ni Core-shell Nanochains as Low-cost High-rate Performance Electrode for Energy Storage Applications. Sci. Rep. 2019, 9, 7736.
  •  
  • 20. Park, H.-S.; Ko, S.-J.; Park, J.-S.; Kim, J.-Y. Song, H.-K. Redox-active Charge Carriers of Conducting Polymers as a Tuner of Conductivity and Its Potential Window. Sci. Rep. 2013, 3, 2454.
  •  
  • 21. Ovhal, M. M.; Kumar, N.; Hong, S.; Lee, H.; Kang, J.-W. Asymmetric Supercapacitor Featuring Carbon Nanotubes and Nickel Hydroxide Grown on Carbon Fabric: A Study of Self-discharging Characteristics. J. Alloys Compd. 2020, 828, 154447.
  •  
  • 22. Wang, W.; Guo, S.; Lee, I.; Ahmed, K.; Zhong, J.; Favors, Z.; Zaera, F.; Ozkan, M.; Ozkan, C.S. Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors. Sci. Rep. 2015, 4, 4452.
  •  
  • 23. Noori, A.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond. Chem. Soc. Rev. 2019, 48, 1272-1341.
  •  
  • 24. Chien, H. H.; Liao, C. Y.; Hao, Y. C.; Hsu, C. C.; Cheng, I. C.; Yu, I. S.; Chen, J. Z. Improved Performance of Polyaniline/Reduced-graphene-oxide Supercapacitor Using Atmospheric-pressure-plasma-jet Surface Treatment of Carbon Cloth. Electrochim. Acta 2018, 260, 391-399.
  •  
  • 25. Zhang, C.; Higgins, T. M.; Park, S. H.; O’Brien, S. E.; Long, D.; Coleman, J. N.; Nicolosi, V. Highly Flexible and Transparent Solid-state Supercapacitors Based on RuO2/PEDOT:PSS Conductive Ultrathin Films. Nano Energy 2016, 28, 495-505.
  •  
  • 26. Higgins, T. M.; Coleman, J. N. Avoiding Resistance Limitations in High-Performance Transparent Supercapacitor Electrodes Based on Large-Area, High-Conductivity PEDOT:PSS Films. ACS Appl. Mater. Interfaces 2015, 7, 16495-16506.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(2): 234-241

    Published online Nov 30, -0001

  • 10.7317/pk.2024.48.2.234
  • Received on Nov 30, -0001
  • Revised on Nov 30, -0001
  • Accepted on Nov 30, -0001

Correspondence to

  • Jae-Wook Kang
  • Department of Flexible and Printable Electronics, LANL-JBNU Engineering Instutute-Korea,
    Jeonbuk National University, Jeonju 54896, Korea

  • E-mail: jwkang@jbnu.ac.kr