Article
  • Assembly of Flexible 3D Printed SCs from Thermoplastic Polyurethane Embedded Polypyrrole-CuO/MnO2 Composites
  • Young Hwi Jo, Samayanan Selvam , and Jin-Heong Yim

  • Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, Korea

  • 유연한 3D 열가소성 폴리우레탄 기반 폴리피롤-산화구리/이산화망간 복합체 슈퍼커패시터 제작에 관한 연구
  • 조영휘 · 사마야난셀밤 · 임진형

  • 공주대학교 공과대학 신소재공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Amir, M.; Deshmukh, G. R.; Khalid, M. H.; Said, Z.; Raza, A.; Muyeen, S. M.; Nizami, A. S.; Elavarasan, R. M.; Saidur, R.; Sopian, K. An Integrated Survey of Developments, Global Economical/environmental Effects, Optimal Scheduling Model, and Sustainable Adaption Policies. J. Energy Storage 2023, 72, 108694.
  •  
  • 2. Shao, C.; Zhao, Y.; Qu, L.; Recent Advances in Highly Integrated Energy Conversion and Storage System. SusMat. 2022, 2, 142-160.
  •  
  • 3. Mousavi, M. S.; Hashemi, A. S.; Kalashgrni, M. Y.; Gholami, A.; Binazadeh, M.; Chiang, W. H.; Rahman, M. M. Recent Advances in Energy Storage with Graphene Oxide for SC Technology. Sustainable Energy Fuels, 2023, 7, 5176-5197.
  •  
  • 4. Benoy, S. M.; Pandey, M.; Bhattacharjya, D.; Saikia, B. K; Recent Trends in SC-battery Hybrid Energy Storage Devices Based on Carbon Materials, J. Energy Storage, 2022, 52, 104938.
  •  
  • 5. Khosrozadeh, A.; Singh, G.; Wang, Q.; Luo, G.; Xing, M. SC with Extraordinary Cycling Stability and High Rate from Nano-architectured Polyaniline/graphene on Janus Nanofibrous Film with Shape Memory, J. Mater. Chem. A, 2018, 6, 21064-21077.
  •  
  • 6. Liu, J.; Ma, J.; Chen, J.; Sun, J.; Liu, C.; Liang, S.; Zou, L. Design and Simple Preparation of a Novel 1D/2D/3D Multi-structure Composite for High-performance SCs. J. Alloys. Compd. 2023, 963, 171034.
  •  
  • 7. Yang, G.; Zhou, J.; Zhang, Z.; Song, Y.; Li, Wei.; Chen, Z.; Chu, W.; Chen, J.; Xue, Y.; Peng, C.; Tang, W. Engineering 3D Vertically-aligned Lamellar-structured Graphene Incorporated with Polypyrrole for Thickness-independent Zinc-ion Hybrid SC. J. Alloys. Compd. 2023, 938, 168447.
  •  
  • 8. Areir, M.; Xu, Y.; Harrison, D.; Fyson, J. 3D Printing of Highly Flexible SC Designed for Wearable Energy Storage, Mater. Sci. Eng. B, 2017, 226, 29-38.
  •  
  • 9. Godoi, F. C.; Prakash, S.; Bhandari, B. R. 3D Printing Technologies Applied for Food Design: Status and Prospects J. Food Eng. 2016, 179, 44-54.
  •  
  • 10. Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C. C. L.; Shin, T. C.; Zhang, S.; Zavattieri, P. D. The Status, Challenges, and Future of Additive Manufacturing in Engineering Comput. Aided Des. 2015, 69, 65-89.
  •  
  • 11. Zhang, Z.; Deng, J.; Li, X.; Yang, Z.; He, S.; Chen, X.; Guan, G.; Ren, J.; Peng, H. Superelastic SCs with High Performances During Stretching. Adv. Mater. 2015, 27, 356-362.
  •  
  • 12. Li, B.; Zhang, S.; Zhang, L.; Gao, Y.; Xuan, F. Train Sensing Behavior of FDM 3D Printed Carbon Black Filled TPU with Periodic Configurations and Flexible Substrates. J. Manuf. Process. 2022, 74, 283-295.
  •  
  • 13. Christ, J. F.; Aliheidari, N.; Ameli, A.; Tschke, P.; 3D Printed Highly Elastic Strain Sensors of Multi-walled Carbon Nanotube/thermoplastic Polyurethane Nanocomposites. Mater. Des. 2017, 131, 394-401.
  •  
  • 14. Chen, Y.; Li, Y.; Xu, D.; Zhai, W. Fabrication of Stretchable Flexible Conductive Thermoplastic Polyurethane/graphene Composites Via Foaming, RSC Adv, 2015, 5, 82034-82041.
  •  
  • 15. Xiang, D.; Zhang, X.; Li, Y.; Harkin-Jones, E.; Zheng, Y.; Wang, L. Enhanced Performance of 3D Printed Highly Elastic Strain Sensors of Carbon Nanotube/thermoplastic Polyurethane Nanocomposites Via Non-covalent Interactions. Composites, 2019, 176, 107250.
  •  
  • 16. Zheng, Y.; Li, Y.; Li, Z.; Wang, Y.; Dai, K.; Zheng, G.; The Effect of Filler Dimensionality on the Electromechanical Performance of Polydimethylsiloxane Based Conductive Nanocomposites for Flexible Strain Sensors. Compos. Sci. Technol. 2017, 139, 64-73.
  •  
  • 17. Sultan, A.; Ahmad, S.; Anwer, T.; Mohammad, F. Binary Doped Polypyrrole and Polypyrrole/boron Nitride Nanocomposites: Preparation, Characterization and Application in Detection of Liquefied Petroleum Gas Leaks, RSC Adv. 2015, 5, 105980-105991.
  •  
  • 18. Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C.; Nanostructured Polypyrrole as a Flexible Electrode Material of SC, Nano Energy. 2016, 22, 422-438.
  •  
  • 19. Song, Y.; Shang, M.; Li, J.; Su, Y. Continuous and Controllable Synthesis of MnO2/PPy Composites with Core–shell Structures for SCs, J. Chem. Eng. 2021, 405, 127059.
  •  
  • 20. Shen, M.; Chen, L.; Chen, Y.; Li, W.; Zheng, R.; Lin, Y.; Han, D. Construction of CuO/PPy Heterojunction Nanowire Arrays on Copper Foam as Integrated Binder-free Electrode Material for High-performance SC, J. Electroanal. Chem. 2021, 891, 115272.
  •  
  • 21. Yin, Z.; Fan, W.; Li, J.; Guan, L.; Zheng, Q. Shell Structure Control of PPy-Modified CuO Composite Nanoleaves for Lithium Batteries with Improved Cyclic Performance, ACS Sustainable Chem. Eng. 2015, 3, 507-517.
  •  
  • 22. Karthick, S.; Susmisha, A.; Haribabu, K. Performance of Tungsten Oxide/polypyrrole Composite as Cathode Catalyst in Single Chamber Microbial Fuel Cell, J. Environ. Chem. Eng. 2020, 8, 104520.
  •  
  • 23. Sivakkumar, S. R.; Ko, J. M.; Kim, D. Y.; Kim, B. C.; Wallace, G. G. Performance Evaluation of CNT/polypyrrole/MnO2 Composite Electrodes for Electrochemical Capacitors. Electrochim. Acta. 2007, 52, 7377-7385
  •  
  • 24. Huang, M.; Li, F.; Zhang, X. Y.; Gao, X. Hierarchical NiO Nanoflake Coated CuO Flower Core–shell Nanostructures for SC, Ceramics. Int. 2014, 40, 5533-5538.
  •  
  • 25. Kim, J. Y.; Selvam, S.; Yim, H. J. Preparation of Porous TPU-PPy Flexible Composite Using 3D Printer and Its Application as Electrode Scaffold for Energy Storage Devices, Polym. Korea, 2022, 46, 389-396.
  •  
  • 26. Kim, J. Y.; Kim, -H, D.; Choi, S. J.; Yim, H. J. A Multi-functional Ammonia Gas and Strain Sensor with 3D-printed Thermoplastic Polyurethane-polypyrrole Composites. Polymer. 2022, 240, 124490.
  •  
  • 27. Park, D.; Park, K. Y.; Selvam, S.; Yim, H. J. Tyrene-based Ternary Composite Elastomers Functionalized with Graphene Oxide-polypyrrole Under Iron(III)-alkyl Benzenesulfonate Oxidants for SC Integrated Strain Sensor System. J. Energy. Stroage, 2022, 51, 104543.
  •  
  • 28. Yan, L.; Xiong, T.; Zhang, Z.; Yang, H.; Zhang, X.; He, Y.; Bian, J.; Lin, H.; Chen, D. Facile Preparation of TPU Conductive Nanocomposites Containing Polypyrrole-coated Multi-walled Carbon Nanotubes for a Rapid and Selective Response in Volatile Organic Compounds Applications. Compos. A: Appl. Sci. 2022, 157, 106913.
  •  
  • 29. Bertolini, C. M.; Zamperlin, N.; Barra, G. M. O.; Pegoretti, A. Development of Poly(vinylidene fluoride)/thermoplastic Polyurethane/carbon Black-polypyrrole Composites with Enhanced Piezoelectric Properties. SPE Polymers. 2023, 4, 143-155.
  •  
  • 30. Mohammad, S. D.; Mostafa, Z. M. Experimental Study of Water-based CuO Nanofluid Flow in Heat Pipe Solar Collector, J. Therm. Anal. Calorim. 2019, 137, 2061-2072.
  •  
  • 31. Ruxangul, J; Li, Z; Minchao, W.; Zhao, Q.; Abdiryim, T. Synthesis of Poly(3,4-propylenedioxythiophene)/MnO2 Composites and Their Applications in the Adsorptive Removal of Methylene Blue, Prog. Nat. Sci.; Mater. Int. 2016, 26, 32-40.
  •  
  • 32. Kim, J. Y.; Choi, S. J.; Yim, H. J. Effects of Infill Patterns on Resistance-dependent Strain and Ammonia Gas Sensing Behaviors of 3D-printed Thermoplastic Polyurethane Modified with Polypyrrole. J. Mater. Chem. C, 2022, 10, 6687.
  •  
  • 33. Rakhi, B. R.; Alhebshi, A. N.; Anjum, D. H.; Alshreef, H. N.; Nanostructured Cobalt Sulfide-on-fiber with Tunable Morphology as Electrodes for Asymmetric Hybrid SCs, J. Mater. Chem. A, 2014, 2, 16190-16198.
  •  
  • 34. Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Duan, L.; Wang, L.; Bao, H.; Xu, W. Polypyrrole/reduced Graphene Oxide Coated Fabric Electrodes for Supercapacitor Application. Organic Electronics, 2015, 24, 153-159.
  •  
  • 35. Kakani, V.; Ramesh, S., Lee, H.; Kim, H. Hydrothermal Synthesis of CuO@MnO2 on Nitrogen-doped Multiwalled Carbon Nanotube Composite Electrodes for SC Applications. Sci. Rep. 2022, 12, 12951.
  •  
  • 36. Palem, R. R.; Ramesh, S.; Bathula C.; Kim, H. J.; Lee, H. S.; Kakani, V.; Saratale, C. D.; Yadav, H. M. Enhanced Supercapacitive Behavior by CuO@MnO2/Carboxymethyl Cellulose Composites. Ceramics Intl. 2021, 47, 26738-26747.
  •  
  • 37. Yang, J.; Cao, J.; Peng, Y. Bisset, M.; Kinloch, I. A.; Dryfe, R. A. W. Unlocking the Energy Storage Potential of Polypyrrole Via Electrochemical Graphene Oxide for High Performance Zinc-ion Hybrid Supercapacitors, J. Power. Sources, 2021, 516, 230663.
  •  
  • 38. Gunawardana, M. K.; Disanayaka, H. N.; Fernando, M. S.; de Silva, K. M. N.; de Silva, R. M. Development of Graphene Oxide-based Polypyrrole Nanocomposite for Effective Removal of Anionic and Cationic Dyes from Water. Results Chem, 2023, 6, 101079.
  •  
  • 39. Deka, B. K.; Hazarika, A.; Kang, G.-H.; Hwang, Y. J.; Jaiswal, A. P.; Kim, D. C.; Park, Y. B.; Park, H. W. 3D-Printed Structural Supercapacitor with MXene-N@Zn-Co Selenide Nanowire Based Woven Carbon Fiber Electrodes. ACS Energy Lett. 2023, 8, 963-971.
  •  
  • 40. Idrees, M.; Ahmed, S.; Mohammed, Z.; Korivi, S. N.; Rangari, V. 3D Printed Supercapacitor Using Porous Carbon Derived from Packaging Waste. Additi Manuf, 2020, 36, 101525.
  •  
  • 41. Lin, D.; Swetha, C.; Jean, B. F.; Xinzhe, X.; Anica, P.; Emma, C.; Marcus, A. W. 3D-Printed Graded Electrode with Ultrahigh MnO2 Loading for Non-Aqueous Electrochemical Energy Storage, Adv. Energy Mater. 2023, 13, 2300408.
  •  
  • 42. Zhu, G.; Hou, Y.; Lu, J.; Zhang, Z.; Baig, M. M.; Muhammad, Z. K.; Muhammad, A. A.; Dong, S.; Liu, P.; Ge, X.; Zhang, Y. MXene Decorated 3D-printed Carbon Black-based Electrodes for Solid-state Micro-supercapacitors, J. Mater. Chem. A, 2023, 11, 25422.
  •  
  • 43. Ghosh, K.; Pumera, M. Free-standing Electrochemically Coated MoSx Based 3D-printed Nanocarbon Electrode for Solid-state Supercapacitor Application, Nanoscale, 2021, 13, 5744-5756.
  •  
  • 44. Lee, J.; Jeong, H.; Lavall, R. L.; Busnaina, A.; Kim, Y.; Jung, Y. J.; Lee, H. Y. Polypyrrole Films with Micro/Nanosphere Shapes for Electrodes of High-performance Supercapacitors. ACS Appl. Mater. Interfaces. 2017, 9, 38, 33203-33211.
  •  
  • 45. Nodora, K. M.; Yim, J. H. Study of Growth Mechanism of Conductive Free-standing Films on a Vapor/Water Interface via Gas Phase Polymerization, Polym. Korea, 2021, 45, 267-274.
  •  
  • 46. Jeong, Y.; Moon, B. C.; Kim, Y. Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization, Polym. Korea, 2014, 38, 180-187.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(3): 289-298

    Published online May 25, 2024

  • 10.7317/pk.2024.48.3.289
  • Received on Nov 23, 2023
  • Revised on Jan 31, 2024
  • Accepted on Feb 6, 2024

Correspondence to

  • Samayanan Selvam , and Jin-Heong Yim
  • Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, Korea

  • E-mail: sselvam222@gmail.com, jhyim@kongju.ac.kr