Review
  • Microbial and Enzymes That Can Regulate Plastic Degradation
  • Hwicheol Shin* , Sojin Eem*, Soyeon An*, Dongyeop X. Oh**,† , and Dong-Ku Kang*, ***, ****,†

  • *Department of Chemistry, Incheon National University, Incheon 22012, Korea
    **Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea
    ***Bioplastic Research Center, Incheon National University, Incheon 22012, Korea
    ****Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea

  • 생분해성 플라스틱 분해 조절을 위한 미생물 및 효소 기술
  • 신휘철* · 임소진* · 안소연* · 오동엽**,† · 강동구*, ***, ****,†

  • *인천대학교 화학과, **인하대학교 고분자공학과 및 환경 고분자공학 전공, ***인천대학교 바이오 플라스틱 센터, ****인천대학교 기초과학연구소

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Shashoua, Y. Conservation of Plastics. Routledge: Danmark, 2008.
  •  
  • 2. Geyer, R.; Jambeck, J. R. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782.
  •  
  • 3. Kibria, M. G.; Masuk, N. I. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. Environ. Res. 2023, 17, 20.
  •  
  • 4. Walker, T. R.; Fequet, L. Current trends of Unsustainable Plastic Production and Micro (nano) Plastic Pollution. Trac-Trends Anal. Chem. 2023, 160, 116984.
  •  
  • 5. PlasticsEurope, The Circular Economy for Plastics—A European Overview. Technical Report 2019.
  •  
  • 6. Padervand, M.; Lichtfouse, E. Removal of Microplastics from the Environment. A Review. Environ. Chem. Lett. 2020, 18, 807-828.
  •  
  • 7. Eriksen, M.; Lebreton, L. C. Plastic Pollution in the World's Oceans: More Than 5 Trillion Plastic Pieces Weighing Over 250000 tons Afloat at Sea. PLoS One, 2014, 9, e111913.
  •  
  • 8. Narancic, T.; Weirckx, N. Converting Petrochemical Plastic to Biodegradable Plastic, in The Handbook of Polyhydroxyalkanoates; CRC Press:Boca Raton, 2020.
  •  
  • 9. Geyer, R.; Jambeck, J. R. Production, Use, and Fate of All Plastics ever Made. Sci. Adv. 2017, 3, e1700782.
  •  
  • 10. Jambeck, J. R.; Geyer, R. Plastic Waste Inputs from Land Into the Ocean. Science 2015, 347, 768-771.
  •  
  • 11. Chae, Y.; An, Y. Current Research Trends on Plastic Pollution and Ecological Impacts on the Soil Ecosystem: A Review. Environ. Pollut. 2018, 240, 387-395.
  •  
  • 12. Ali, S. S.; Abdelkarim, E. A. Bioplastic Production in Terms of Life Cycle Assessment: A State-of-the-art Review. Env. Sci. Ecotechnol. 2023, 15, 100254.
  •  
  • 13. EN 17228:2019 - European Standards. accessed April 28, 2020.
  •  
  • 14. Pathak, V. M.; Navneet, J. B. Review on the Current Status of Polymer Degradation: a Microbial Approach. Bioresour. Bioprocess. 2017, 4, 15.
  •  
  • 15. García-Depraect, O.; Bordel, S. Inspired by Nature: Microbial Production, Degradation and Valorization of Biodegradable Bioplastics for Life-cycle-engineered Products. Biotechnol. Adv. 2021, 53, 107772.
  •  
  • 16. Prakash, O.; Mostafa, A. Upflow Anaerobic Sludge Blanket Reactor Operation Under High Pressure for Energy-rich Biogas Production. Bioresour. Technol. 2023, 376, 128897.
  •  
  • 17. Bioplastics, E. Bioplastics Market Development Update 2023,2023 [cited 2024 05.23]; Available from: https://www.european-bioplastics.org/market/ (accessed May 23, 2024).
  •  
  • 18. 2019/904, D. E. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment 2019 [cited 2024 23 May]; Available from: https://eur-lex.europa.eu/eli/dir/2019/904/oj (accessed May 23, 2024).
  •  
  • 19. Cucina, M.; De Nisi, P. Degradation of Bioplastics in Organic Waste by Mesophilic Anaerobic Digestion, Composting and Soil Incubation. Waste Manage. 2021, 134, 67-77.
  •  
  • 20. Thakur, S.; Chaudhary, J. Sustainability of Bioplastics: Opportunities and Challenges. Curr. Opin. Green Sustain. Chem. 2018, 13, 68-75.
  •  
  • 21. Ahsan, W. A.; Hussain, A. Biodegradation of Different Types of Bioplastics Through Composting—a Recent Trend in Green Recycling. Catalysts 2023, 13, 294.
  •  
  • 22. Shivam, P. Recent Developments on Biodegradable Polymers and Their Future Trends. Int. J. Eng. Sci. 2016, 4, 17-26.
  •  
  • 23. Ghanbarzadeh, B.; Almasi, H. Biodegradable Polymers. Biodegradation - Life of Science 2013, 141-185.
  •  
  • 24. Jha, K.; Kataria, R. Potential Biodegradable Matrices and Fiber Treatment for Green Composites: A Review. AIMS Mater. Sci. 2019, 6, 119-138.
  •  
  • 25. Ho, M.-P.; Wang, H. Critical Factors on Manufacturing Processes of Natural Fibre Composites. Compos. Part B: Eng. 2012, 43, 3549-3562.
  •  
  • 26. Balaji, A. B.; Pakalapati, H. Natural and Synthetic Biocompatible and Biodegradable Polymers. Biodegradable and Biocompatible Polym. Compos. 2018, 286, 3-32.
  •  
  • 27. Li, X.; Su, X. Multifunctional Smart Hydrogels: Potential in Tissue Engineering and Cancer Therapy. J. Mat. Chem. B 2018, 6, 4714-4730.
  •  
  • 28. Sun, J.-Y.; Zhao, X. Highly Stretchable and Tough Hydrogels. Nature 2012, 489, 133-136.
  •  
  • 29. Yu, Y.; Shang, L. Design of Capillary Microfluidics for Spinning Cell-laden Microfibers. Nat. Protoc. 2018, 13, 2557-2579.
  •  
  • 30. Chen, Y. R.; Sarkanen, S. Biodegradable Lignin-Based Plastics. Biodegradable Polymers in the Circular Plastics Economy 2022, 329-368.
  •  
  • 31. Sriyapai, P.; Chansiri, K. Isolation and Characterization of Polyester-based Plastics-degrading Bacteria from Compost Soils. Microbiology 2018, 87, 290-300.
  •  
  • 32. Sashiwa, H.; Fukuda, R. Microbial Degradation Behavior in Seawater of Polyester Blends Containing Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Mar. Drugs 2018, 16, 34.
  •  
  • 33. Sun, T.; Li, G. Suitability of Mulching with Biodegradable Film to Moderate Soil Temperature and Moisture and to Increase Photosynthesis and Yield in Peanut. Agric. Water Manage. 2018, 208, 214-223.
  •  
  • 34. Koller, M.; Mukherjee, A. Polyhydroxyalkanoates (PHAs)–Production, Properties, and Biodegradation. In Biodegradable Polymers in the Circular Plastics Economy; Dusselier, M., Lange, J.-P., Eds.; Wiley: New Jersey, 2022; pp. 145-204.
  •  
  • 35. Zhang, L.; Zhong, J.; Ren, X. Natural fiber-based biocomposites. In Green Biocomposites: Manufacturing and Properties; Jawaid, M., Sapuan, S. M., Alothman, O. Y., Eds.; Springer: Cham, 2017; pp 31-70.
  •  
  • 36. Mangaraj, S.; Yadav, A. Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review. J. Packag. Technol. Res. 2019, 3, 77-96.
  •  
  • 37. Jiang, L.; Sabzi, M. Biodegradable and Biobased Polymers. Applied Plastics Engineering Handbook 2024, 133-165.
  •  
  • 38. Saini, R. Biodegradable Polymers. Appl. Chem. 2017, 13, 179-196.
  •  
  • 39. Shah, T. V.; Vasava, D. A Glimpse of Biodegradable Polymers and Their Biomedical Applications. e-polymers 2019, 19, 385-410.
  •  
  • 40. Muller, J.; González-Martínez, C. Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials 2017, 10, 952.
  •  
  • 41. Jem, K. J.; Tan, B. The Development and Challenges of Poly(lactic acid) and Poly(glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3, 60-70.
  •  
  • 42. Pawar, P. A.; Purwar, A. H. Biodegradable Polymers in Food Packaging. Am. J. Eng. Res. 2013, 2, 151-164.
  •  
  • 43. Pan, Y.; Farmahini-Farahani, M. An Overview of Bio-based Polymers for Packaging Materials. J. Bioresour. Bioprod. 2016, 1, 106-113.
  •  
  • 44. Luckachan, G. E.; Pillai, C. K. S. Biodegradable Polymers-a Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011, 19, 637-676.
  •  
  • 45. Jem, K.; Tan, B. The Development and Challenges of Poly(lactic acid) and Poly(glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3, 60-70.
  •  
  • 46. Gentile, P.; Chiono, V. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014, 15, 3640-3659.
  •  
  • 47. Aamer Ali Shah, Fariha Hasan, Biological Degradation of Plastics: a Comprehensive Review. Biotechnol. Adv. 2008, 26, 246-265.
  •  
  • 48. Bakhtiari, S. S. E.; Karbasi, S. Modified Poly(3-hydroxybutyrate)-based Scaffolds in Tissue Engineering Applications: A Review. Int. J. Biol. Macromol. 2021, 166, 986-998.
  •  
  • 49. Tebaldi, M. L.; Maia, A. L. C. Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Current Advances in Synthesis Methodologies, Antitumor Applications and Biocompatibility. J. Drug Deliv. Sci. Technol. 2019, 51, 115-126.
  •  
  • 50. Mukherjee, C.; Varghese, D. Recent Advances in Biodegradable Polymers–Properties, Applications and Future Prospects. Eur. Polym. J. 2023, 112068.
  •  
  • 51. Rafiqah, S.; Khalina, A. A Review on Properties and Application of Bio-based Poly(butylene succinate). Polymers 2021, 13,1436.
  •  
  • 52. Sousa, A. F.; Vilela, C. Biobased Polyesters and Other Polymers from 2,5-furandicarboxylic Acid: a Tribute to Furan Excellency. Polym. Chem. 2015, 6, 5961-5983.
  •  
  • 53. Díaz, A.; Katsarava, R. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: from Polyesters to Poly(ester amide)s. Int. J. Mol. Sci. 2014, 15, 7064-7123.
  •  
  • 54. Witt, U.; Muller, R. Biodegradable Polyester Copolymers with Adaptable Application Properties Based on Mass Chemical-Products. Chem. Ing. Tech. 1995, 67, 904-907.
  •  
  • 55. Witt, U.; Müller, R. Biodegradation of Polyester Copolymers Containing Aromatic Compounds. J. Macromol. Sci. Part A-Pure Appl. Chem. 1995, 32, 851-856.
  •  
  • 56. Witt, U.; Müller, R.-J. Evaluation of the Biodegradability of Copolyesters Containing Aromatic Compounds by Investigations of Model Oligomers. J. Environ. Polym. Degrad. 1996, 4, 9-20.
  •  
  • 57. Leonard, E. Part 2, Wiley-lnterscience, New York, NY, High Polymers. 1971.
  •  
  • 58. Kolter, K.; Dashevsky, A. Polyvinyl Acetate-based Film Coatings. Int. J. Pharm. 2013, 457, 470-479.
  •  
  • 59. Marušincová, H.; Husárová, L. Polyvinyl Alcohol Biodegradation Under Denitrifying Conditions. Int. Biodeterior. Biodegrad. 2013, 84, 21-28.
  •  
  • 60. Li, M.; Zhang, D. X. Enhancement of PVA-degrading Enzyme Production by the Application of pH Control Strategy. J. Microbiol. Biotechnol. 2012, 22, 220-225.
  •  
  • 61. Lucas, N.; Bienaime, C. Polymer Biodegradation: Mechanisms and Estimation Techniques–A Review. Chemosphere 2008, 73, 429-442.
  •  
  • 62. Chandra, R. U. S. T. G. I.; Rustgi, R. Biodegradable Polymers. Prog. Polym. Sci. 1998, 23, 1273-1335.
  •  
  • 63. Doble, M. Biodegradation of Polymers. Indian J. Biotechnol. 2005, 4, 186-193.
  •  
  • 64. Itävaara, M.; Karjomaa, S. Biodegradation of Polylactide in Aerobic and Anaerobic Thermophilic Conditions. Chemosphere 2002, 46, 879-885.
  •  
  • 65. Apinya, T.; Sombatsompop, N. Selection of a Pseudonocardia sp. RM423 that Accelerates the Biodegradation of Poly(lactic) Acid in Submerged Cultures and in Soil Microcosms. Int. Biodeterior. Biodegrad. 2015, 99, 23-30.
  •  
  • 66. Strömberg, E.; Karlsson, S. The Effect of Biodegradation on Surface and Bulk Property Changes of Polypropylene, Recycled Polypropylene and Polylactide Biocomposites. Int. Biodeterior. Biodegrad. 2009, 63, 1045-1053.
  •  
  • 67. Rudnik, E.; Briassoulis, D. Comparative Biodegradation in Soil Behaviour of Two Biodegradable Polymers Based on Renewable Resources. J. Polym. Environ. 2011, 19, 18-39.
  •  
  • 68. Tomita, K.; Nakajima, T. Degradation of Poly(L-lactic acid) by a Newly Isolated Thermophile. Polym. Degrad. Stabil. 2004, 84, 433-438.
  •  
  • 69. Castro-Aguirre, E.; Auras, R. Enhancing the Biodegradation Rate of Poly(lactic acid) Films and PLA Bio-nanocomposites in Simulated Composting Through Bioaugmentation. Polym. Degrad. Stabil. 2018, 154, 46-54.
  •  
  • 70. Husárová, L.; Pekařová, S. Identification of Important Abiotic and Biotic Factors in the Biodegradation of Poly(l-lactic acid). Int. J. Biol. Macromol. 2014, 71, 155-162.
  •  
  • 71. Arena, M.; Abbate, C. Degradation of Poly(lactic acid) and Nanocomposites by Bacillus Licheniformis. Environ. Sci. Pollut. Res. 2011, 18, 865-870.
  •  
  • 72. Satti, S. M.; Shah, A. A. Isolation and Characterization of Bacteria Capable of Degrading Poly(lactic acid) at Ambient Temperature. Polym. Degrad. Stabil. 2017, 144, 392-400.
  •  
  • 73. Teeraphatpornchai, T.; Nakajima-Kambe, T. Isolation and Characterization of a Bacterium That Degrades Various Polyester-based Biodegradable Plastics. Biotechnol. Lett. 2003, 25, 23-28.
  •  
  • 74. Jarerat, A.; Tokiwa, Y. Poly(L-lactide) Degradation by Saccharothrix Waywayandensis. Biotechnol. Lett. 2003, 25, 401-404.
  •  
  • 75. Zaaba, N. F.; Jaafar, M. A Review on Degradation Mechanisms of Polylactic Acid: Hydrolytic, Photodegradative, Microbial, and Enzymatic Degradation. Polym. Eng. Sci. 2020, 60, 2061-2075.
  •  
  • 76. Kawai, F.; Nakadai, K. Different Enantioselectivity of Two Types of Poly(lactic acid) Depolymerases Toward Poly(L-lactic acid) and Poly(D-lactic acid). Polym. Degrad. Stabil. 2011, 96, 1342-1348.
  •  
  • 77. Jarerat, A.; Pranamuda, H. Poly(L-lactide)-degrading Activity in Various Actinomycetes. Macromol. Biosci. 2002, 2, 420-428.
  •  
  • 78. Penkhrue, W., Khanongnuch, C., Isolation and Screening of Biopolymer-degrading Microorganisms from Northern Thailand. World J. Microbiol. Biotechnol. 2015, 31, 1431-1442.
  •  
  • 79. Nakamura, K.; Tomita, T. Purification and Characterization of an Extracellular Poly(L-lactic acid) Depolymerase from a Soil Isolate, Amycolatopsis sp. Strain K104-1. Appl. Environ. Microbiol. 2001, 67, 345-353.
  •  
  • 80. Chomchoei, A.; Pathom-Aree, W. Amycolatopsis Thailandensis sp. Nov., a Poly(L-lactic acid)-degrading Actinomycete, Isolated from Soil. Int. J. Syst. Evol. Microbiol. 2011, 61, 839-843.
  •  
  • 81. Janczak, K.; Hrynkiewicz, K. Use of Rhizosphere Microorganisms in the Biodegradation of PLA and PET Polymers in Compost Soil. Int. Biodeterior. Biodegrad. 2018, 130, 65-75.
  •  
  • 82. Shin, G.; Park, S.-A. A Micro-spray-based High-throughput Screening System for Bioplastic-degrading Microorganisms. Green Chem. 2021, 23, 5429-5436.
  •  
  • 83. Yu, J.; Kim, P. D. Comparison of Polylactic Acid Biodegradation Ability of Brevibacillus Brevis and Bacillus Amyloliquefaciens and Promotion of PLA Biodegradation by Soytone. Biodegradation 2022, 33, 477-487.
  •  
  • 84. Tomita, K.; Kuroki, Y. Isolation of Thermophiles Degrading Poly (L-lactic acid). J. Biosci. Bioeng. 1999, 87, 752-755.
  •  
  • 85. Kim, M. N.; Kim, W. G. Poly(L-lactide)-degrading Activity of a Newly Isolated Bacterium. J. Appl. Polym. Sci. 2008, 109, 234-239.
  •  
  • 86. Bonifer, K. S.; Wen, X. Bacillus Pumilus B12 Degrades Polylactic Acid and Degradation is Affected by Changing Nutrient Conditions. Front. Microbiol. 2019, 10, 2548.
  •  
  • 87. Wang, Y.; Hu, T. Biodegradation of Polylactic Acid by a Mesophilic Bacteria Bacillus Safensis. Chemosphere 2023, 318, 137991.
  •  
  • 88. Tomita, K.; Tsuji, H. Degradation of Poly(D-lactic acid) by a Thermophile. Polym. Degrad. Stabil. 2003, 81, 167-171.
  •  
  • 89. Kim, M. N.; Park, S. T. Degradation of Poly(L-lactide) by a Mesophilic Bacterium. J. Appl. Polym. Sci. 2010, 117, 67-74.
  •  
  • 90. Wu, C.-S. Renewable Resource-based Composites of Recycled Natural Fibers and Maleated Polylactide Bioplastic: Characterization and Biodegradability. Polym. Degrad. Stabil. 2009, 94, 1076-1084.
  •  
  • 91. Hanphakphoom, S.; Maneewong, N. Characterization of Poly(L-lactide)-degrading Enzyme Produced by Thermophilic Filamentous Bacteria Laceyella Sacchari LP175. J. Gen. Appl. Microbiol. 2014, 60, 13-22.
  •  
  • 92. Lomthong, T.; Chotineeranat, S. Production and Characterization of Raw Starch Degrading Enzyme from a Newly Isolated Thermophilic Filamentous Bacterium, Laceyella Sacchari LP175. Starch - Stärke 2015, 67, 255-266.
  •  
  • 93. Pathom-aree, W.; Butbunchu, N. Bioprocess Optimization Platform for Valorization of Poly(lactic)-based Bioplastic Waste Using PLA-degrading Actinobacteria, Saccharothrix sp. MY1 Cultured in Silk Wastewater as Low-cost Nutrient Source. Biomass Conv. Bioref. 2022, DOI:10.1007/s13399-022-03524-8.
  •  
  • 94. Nair, N. R.; Sekhar, V. C.; Augmentation of a Microbial Consortium for Enhanced Polylactide (PLA) Degradation. Indian J. Microbiol. 2016, 56, 59-63.
  •  
  • 95. Jeon, H. J.; Kim, M. N. Biodegradation of Poly(L-lactide)(PLA) Exposed to UV Irradiation by a Mesophilic Bacterium. J. Appl. Polym. Sci. 2013, 85, 289-293.
  •  
  • 96. Wang, Z.; Wang, Y. Purification and Characterization of Poly(L-lactic acid) Depolymerase from Pseudomonas sp. Strain DS04-T. Polym. Eng. Sci. 2011, 51, 454-459.
  •  
  • 97. Yagi, H.; Ninomiya, F. Mesophilic Anaerobic Biodegradation Test and Analysis of Eubacteria and Archaea Involved in Anaerobic Biodegradation of Four Specified Biodegradable Polyesters. Polym. Degrad. Stabil. 2014, 110, 278-283.
  •  
  • 98. Karamanlioglu, M.; Houlden, A. Isolation and Characterisation of Fungal Communities Associated with Degradation and Growth on the Surface of Poly(lactic) Acid (PLA) in Soil and Compost. Int. Biodeterior. Biodegrad. 2014, 95, 301-310.
  •  
  • 99. Torres, A.; Li, S. Screening of Microorganisms for Biodegradation of Poly(lactic-acid) and Lactic Acid-containing Polymers. Appl. Environ. Microbiol. 1996, 62, 2393-2397.
  •  
  • 100. Harmaen, A. S.; Khalina, A. Thermal and Biodegradation Properties of Poly(lactic acid)/fertilizer/oil Palm Fibers Blends Biocomposites. Polym. Compos. 2015, 36, 576-583.
  •  
  • 101. Lipsa, R.; Tudorachi, N. Biodegradation of Poly(lactic acid) and Some of Its Based Systems with Trichoderma Viride. Int. J. Biol. Macromol. 2016, 88, 515-526.
  •  
  • 102. Jarerat, A.; Tokiwa, Y. Degradation of Poly(L-lactide) by a Fungus. Macromol. Biosci. 2001, 1, 136-140.
  •  
  • 103. Bubpachat, T.; Sombatsompop, N. Isolation and Role of Polylactic Acid-degrading Bacteria on Degrading Enzymes Productions and PLA Biodegradability at Mesophilic Conditions. Polym. Degrad. Stabil. 2018, 152, 75-85.
  •  
  • 104. Sakai, K.; Kawano, H. Isolation of a Thermophilic Poly-L-Lactide Degrading Bacterium from Compost and Its Enzymatic Characterization. J. Biosci. Bioeng. 2001, 92, 298-300.
  •  
  • 105. Hajighasemi, M.; Nocek, B. P. Biochemical and Structural Insights Into Enzymatic Depolymerization of Polylactic Acid and Other Polyesters by Microbial Carboxylesterases. Biomacromolecules 2016, 17, 2027-2039.
  •  
  • 106. Liang, T.-W.; Jen, S.-N. Application of Chitinous Materials in Production and Purification of a Poly(L-lactic acid) Depolymerase from Pseudomonas Tamsuii TKU015. Polyemrs 2016, 8, 98.
  •  
  • 107. Hoshino, A.; Isono, Y. Degradation of Aliphatic Polyester Films by Commercially Available Lipases with Special Reference to Rapid and Complete Degradation of Poly(L-lactide) Film by Lipase PL Derived From Alcaligenes sp. Biodegradation 2002, 13, 141-147.
  •  
  • 108. Akutsu-Shigeno, Y.; Teeraphatpornchai, T. Cloning and Sequencing of a Poly(DL-lactic acid) Depolymerase Gene from Paenibacillus Amylolyticus Strain TB-13 and Its Functional Expression in Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 2498-2504.
  •  
  • 109. Pranamuda, H.; Tokiwa, Y. Polylactide Degradation by An Amycolatopsis sp. Appl. Environ. Microbiol. 1997, 63, 1637-1640.
  •  
  • 110. Ikura, Y.; Kudo, T. Isolation of a Microorganism Capable of Degrading Poly(L-lactide). J. Gen. Appl. Microbiol. 1999, 45, 247-251.
  •  
  • 111. Pranamuda, H.; Tokiwa, Y. Degradation of Poly(L-lactide) by Strains Belonging to Genus Amycolatopsis. Appl. Environ. Microbiol. 1999, 21, 901-905.
  •  
  • 112. Pranamuda, H.; Tsuchii, A. Poly(L-lactide)-Degrading Enzyme Produced by Amycolatopsis sp. Macromol. Biosci. 2001, 1, 25-29.
  •  
  • 113. Jarerat, A.; Tokiwa, Y. Production of Poly(L-lactide)-degrading Enzyme by Amycolatopsis Orientalis for Biological Recycling of Poly(L-lactide). Appl. Microbiol. Biotechnol. 2006, 72, 726-731.
  •  
  • 114. Jarerat, A.; Tokiwa, Y. Poly(L-lactide) Degradation by Kibdelosporangium Aridum. Biotechnol. Lett. 2003, 25, 2035-2038.
  •  
  • 115. Vert, M.; Doi, Y. Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377-410.
  •  
  • 116. Muhammadi; Shabina; Afzal, M.; Hameed, S. Bacterial Polyhydroxyalkanoates-eco-friendly Next Generation Plastic: Production, Biocompatibility, Biodegradation, Physical Properties and applications. Green Chem. Lett. Rev. 2015, 8, 56-77.
  •  
  • 117. Jendrossek, D.; Handrick, R. Microbial Degradation of Polyhydroxyalkanoates. Annu. Rev. Microbiol. 2002, 56, 403-432.
  •  
  • 118. Numata, K.; Abe, H. Biodegradability of Poly(hydroxyalkanoate) Materials. Materials 2009, 2, 1104-1126.
  •  
  • 119. Zhang, Y.; Cao, Y. Marine Biodegradation of Plastic Films by Alcanivorax Under Various Ambient Temperatures: Bacterial Enrichment, Morphology Alteration, and Release of Degradation Products. Sci. Total Environ. 2024, 917, 170527.
  •  
  • 120. Zhou, W.; Bergsma, S. Polyhydroxyalkanoates (PHAs) Synthesis and Degradation by Microbes and Applications Towards a Circular Economy. J. Environ. Manage. 2023, 341, 118033.
  •  
  • 121. Cho, J. Y., Park, S. L. Polyhydroxyalkanoates (PHAs) Degradation by the Newly Isolated Marine Bacillus sp. JY14. Chemosphere 2021, 283, 131172.
  •  
  • 122. Cazaudehore, G.; Monlau, F. Active Microbial Communities During Biodegradation of Biodegradable Plastics by Mesophilic and Thermophilic Anaerobic Digestion. J. Hazard. Mater. 2023, 443, 130208.
  •  
  • 123. Mas-Castella, J.; Urmeneta, J. Biodegradation of poly-β-hydroxyalkanoates in Anaerobic Sediments. Int. Biodeterior. Biodegrad. 1995, 35, 155-174.
  •  
  • 124. Kita, K.; Mashiba, S.-I. Cloning of Poly(3-hydroxybutyrate) Depolymerase from a Marine Bacterium, Alcaligenes Faecalis AE122, and Characterization of Its Gene Product. Biochim. Biophys. Acta-Gene Struct. Expression 1997, 1352, 113-122.
  •  
  • 125. Omura, T.; Isobe, N. Microbial Decomposition of Biodegradable Plastics on the Deep-sea Floor. Nat. Commun. 2024, 15, 568.
  •  
  • 126. Kanmani, P.; Kumaresan, K. Enzymatic Degradation of Polyhydroxyalkanoate Using Lipase from Bacillus Subtilis. Int. J. Environ. Sci. Technol. 2016, 13, 1541-1552.
  •  
  • 127. Volova, T.; Boyandin, A. Biodegradation of Polyhydroxyalkanoates (PHAs) in Tropical Coastal Waters and Identification of PHA-degrading Bacteria. Polym. Degrad. Stabil. 2010, 95, 2350-2359.
  •  
  • 128. Phukon, P.; Saikia, J. P. Bio-plastic (P-3HB-co-3HV) from Bacillus Circulans (MTCC 8167) and Its Biodegradation. Colloid Surf. B-Biointerfaces 2012, 92, 30-34.
  •  
  • 129. Focarete, M. L.; Ceccorulli, G. Further Evidence of Crystallinity-Induced Biodegradation of Synthetic Atactic Poly(3-hydroxybutyrate) by PHB-depolymerase A from Pseudomonas l Emoignei. Blends of Atactic Poly(3-hydroxybutyrate) with Crystalline Polyesters. Macromolecules 1998, 31, 8485-8492.
  •  
  • 130. Mukai, K.; Yamada, K. Efficient Hydrolysis of Polyhydroxyalkanoates by Pseudomonas Stutzeri YM1414 Isolated from Lake Water. Polym. Degrad. Stabil. 1994, 43, 319-327.
  •  
  • 131. Elbanna, K.; Lütke-Eversloh, T. Studies on the Biodegradability of Polythioester Copolymers and Homopolymers by Polyhydroxyalkanoate (PHA)-degrading Bacteria and PHA Depolymerases. Arch. Microbiol. 2004, 182, 212-225.
  •  
  • 132. Mabrouk, M. M.; Sabry, S. A. Degradation of Poly(3-hydroxybutyrate) and Its Copolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a Marine Streptomyces sp. SNG9. Microbiol. Res. 2001, 156, 323-335.
  •  
  • 133. Berezina, N.; Yada, B. Enzymatic Surface Treatment of Poly(3-hydroxybutyrate)(PHB), and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). J. Chem. Technol. Biotechnol. 2015, 90, 2036-2039.
  •  
  • 134. Zadjelovic, V.; Chhun, A. Beyond Oil Degradation: Enzymatic Potential of Alcanivorax to Degrade Natural and Synthetic Polyesters. Environ. Microbiol. 2020, 22, 1356-1369.
  •  
  • 135. Gricajeva, A.; Nadda, A. K. Insights Into Polyester Plastic Biodegradation by Carboxyl Ester Hydrolases. J. Chem. Technol. Biotechnol. 2022, 97, 359-380.
  •  
  • 136. Allen, A. D.; Anderson, W. Isolation and Characterization of An Extracellular Thermoalkanophilic P(3HB-co-3HV) Depolymerase from Streptomyces sp. IN1. Int. Biodeterior. Biodegrad. 2011, 65, 777-785.
  •  
  • 137. Abe, T.; Kobayashi, T. Properties of a Novel Intracellular Poly (3-hydroxybutyrate) Depolymerase with High Specific Activity (PhaZd) in Wautersia Eutropha H16. J. Bacteriol. 2005, 187, 6982-6990.
  •  
  • 138. Leathers, T. D.; Govind, N. S. Biodegradation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a Tropical Marine Bacterium, Pseudoalteromonas sp. NRRL B-30083. J. Polym. Environ. 2000, 8, 119-124.
  •  
  • 139. Chen, S.; Zhang, X. Degradation of PGA, Prepared by Reactive Extrusion Polymerization, in Water, Humid, and Dry Air, and in a Vacuum. J. Mater. Res. 2020, 35, 1846-1856.
  •  
  • 140. Volcani, B.; Margalith, P. A New Species (Flavobacterium polyglutamicum) Which Hydrolyzes the γ-L-glutamyl Bond in Polypeptides. J. Bacteriol. 1957, 74, 646-655.
  •  
  • 141. Tanaka, T.; Hiruta, O. Purification and Characterization of Poly (γ-glutamic acid) Hydrolase from a Filamentous Fungus, Myrothecium sp. TM-4222. Biosci., Biotechnol., Biochem. 1993, 57, 2148-2153.
  •  
  • 142. King, E. C.; Blacker, A. J. Enzymatic Breakdown of Poly-γ-D-Glutamic Acid in Bacillus Licheniformis: Identification of a Polyglutamyl γ-hydrolase Enzyme. Biomacromolecules 2000, 1, 75-83.
  •  
  • 143. Kitamoto, H. K.; Shinozaki, Y. Phyllosphere Yeasts Rapidly Break Down Biodegradable Plastics. AMB Express 2011, 1, 1-11.
  •  
  • 144. Mao, H.; Liu, H. Biodegradation of Poly(butylene succinate) by Fusarium sp. FS1301 and Purification and Characterization of Poly(butylene succinate) Depolymerase. Polym. Degrad. Stabil. 2015, 114, 1-7.
  •  
  • 145. Maeda, H.; Yamagata, Y. Purification and Characterization of a Biodegradable Plastic-degrading Enzyme from Aspergillus Oryzae. Appl. Microbiol. Biotechnol. 2005, 67, 778-788.
  •  
  • 146. Lee, S.-H.; Kim, M.-N. Isolation of Bacteria Degrading Poly (butylene succinate-co-butylene adipate) and Their Lip A Gene. Int. Biodeterior. Biodegrad. 2010, 64, 184-190.
  •  
  • 147. Thirunavukarasu, K.; Purushothaman, S. Degradation of Poly (butylene succinate) and Poly(butylene succinate-co-butylene adipate) by a Lipase from Yeast Cryptococcus sp. Grown on Agro-industrial Residues. Int. Biodeterior. Biodegrad. 2016, 110, 99-107.
  •  
  • 148. Hu, X.; Gao, Z. Enzymatic Degradation of Poly(butylene succinate) by Cutinase Cloned from Fusarium Solani. Polym. Degrad. Stabil. 2016, 134, 211-219.
  •  
  • 149. Jia, H.; Zhang, M. Degradation of Poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 Isolated from Farmland Soil. J. Environ. Sci. 2021, 103, 50-58.
  •  
  • 150. Gamerith, C.; Vastano, M. Enzymatic Degradation of Aromatic and Aliphatic Polyesters by P. pastoris Expressed Cutinase 1 from Thermobifida Cellulosilytica. Front. Microbiol. 2017, 8, 938.
  •  
  • 151. Muroi, F.; Tachibana, Y. Characterization of a Poly(butylene adipate-co-terephthalate) Hydrolase from the Aerobic Mesophilic Bacterium Bacillus Pumilus. Polym. Degrad. Stabil. 2017, 137, 11-22.
  •  
  • 152. Kanwal, A.; Zhang, M. Enzymatic Degradation of Poly (butylene adipate co-terephthalate) (PBAT) Copolymer Using Lipase B from Candida Antarctica (CALB) and Effect of PBAT on Plant Growth. Polym. Bull. 2022, 79, 9059-9073.
  •  
  • 153. Perz, V.; Bleymaier, K. Substrate Specificities of Cutinases on Aliphatic–aromatic Polyesters and on Their Model Substrates. New Biotech. 2016, 33, 295-304.
  •  
  • 154. Wang, A.; De Silva, K. Cr-Free Anticorrosive Primers for Marine Propeller Applications. Polymers 2024, 16, 408.
  •  
  • 155. Perz, V.; Baumschlager, A. Hydrolysis of Synthetic Polyesters by Clostridium Botulinum Esterases. Biotechnol. Bioeng. 2016, 113, 1024-1034.
  •  
  • 156. Tesei, D.; Quartinello, F. Shotgun Proteomics Reveals Putative Polyesterases in the Secretome of the Rock-inhabiting Fungus Knufia Chersonesos. Sci Rep 2020, 10, 9770.
  •  
  • 157. Biundo, A.; Hromic, A. Characterization of a Poly(butylene adipate-co-terephthalate)-hydrolyzing Lipase from Pelosinus Fermentans. Appl. Microbiol. Biotechnol. 2016, 100, 1753-1764.
  •  
  • 158. Wallace, P. W.; Haernvall, K. PpEst is a novel PBAT Degrading Polyesterase Identified by Proteomic Screening of Pseudomonas Pseudoalcaligenes. Appl. Microbiol. Biotechnol. 2017, 101, 2291-2303.
  •  
  • 159. Yang, Y.; Min, J. Complete Bio-degradation of Poly(butylene adipate-co-terephthalate) via Engineered Cutinases. Nat. Commun. 2023, 14, 1645.
  •  
  • 160. Xu, J.; Feng, K. Enhanced Biodegradation Rate of Poly (butylene adipate-co-terephthalate) Composites Using Reed Fiber. Polymers 2024, 16, 411.
  •  
  • 161. Jamnongkan, T.; Sirichaicharoenkol, K. Innovative Electrospun Nanofiber Mats Based on Polylactic Acid Composited with Silver Nanoparticles for Medical Applications. Polymers 2024, 16, 409.
  •  
  • 162. Kalia, V. C.; Patel, S. K. Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers. Polymers 2024, 16, 410.
  •  
  • 163. Chua, T.-K.; Tseng, M. Degradation of Poly(ε-caprolactone) by Thermophilic Streptomyces Thermoviolaceus Subsp. Thermoviolaceus 76T-2. Amb Express 2013, 3, 8.
  •  
  • 164. Suzuki, M.; Tachibana, Y. Microbial Degradation of Poly(ε-caprolactone) in a Coastal Environment. Polym. Degrad. Stabil. 2018, 149, 1-8.
  •  
  • 165. Federle, T. W.; Barlaz, M. A. Anaerobic Biodegradation of Aliphatic Polyesters: Poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) and Poly(ε-caprolactone). Biomacromolecules 2002, 3, 813-822.
  •  
  • 166. Sivalingam, G.; Vijayalakshmi, S. Enzymatic and Thermal Degradation of Poly(ε-caprolactone), Poly(D,L-lactide), and Their Blends. Ind. Eng. Chem. Res. 2004, 43, 7702-7709.
  •  
  • 167. Oda, Y.; Oida, N. Polycaprolactone Depolymerase Produced by the Bacterium Alcaligenes Faecalis. FEMS Microbiol. Lett. 1997, 152, 339-343.
  •  
  • 168. Budkum, J.; Thammasittirong, S. N.-R. High Poly ε-caprolactone Biodegradation Activity by a New Acinetobacter Seifertii Isolate. Folia Microbiol. 2022, 67, 659-669.
  •  
  • 169. Hoang, K.-C.; Tseng, M. Degradation of Polyethylene Succinate (PES) by a New Thermophilic Microbispora Strain. Biodegradation 2007, 18, 333-342.
  •  
  • 170. Nakasaki, K.; Matsuura, H. Synergy of Two Thermophiles Enables Decomposition of Poly-ɛ-caprolactone Under Composting Conditions. FEMS Microbiol. Ecol. 2006, 58, 373-383.
  •  
  • 171. Al Hosni, A. S.; Pittman, J. K. Microbial Degradation of Four Biodegradable Polymers in Soil and Compost Demonstrating Polycaprolactone as an Ideal Compostable Plastic. Waste Manage. 2019, 97, 105-114.
  •  
  • 172. Fields, R.; Rodriguez, F. Microbial Degradation of Polyesters: Polycaprolactone Degraded by P. pullulans. J. Appl. Polym. Sci. 1974, 18, 3571-3579.
  •  
  • 173. Khatiwala, V. K.; Shekhar, N. Biodegradation of Poly(ε-caprolactone) (PCL) Film by Alcaligenes Faecalis. J. Polym. Environ. 2008, 16, 61-67.
  •  
  • 174. Sivalingam, G.; Vijayalakshmi, S. Enzymatic and Thermal Degradation of Poly(ε-caprolactone), Poly(D,L-lactide), and Their Blends. Ind. Eng. Chem. Res. 2004, 43, 7702-7709.
  •  
  • 175. Trejo, A. G. J. E.; Safety, E. Fungal Degradation of Polyvinyl Acetate. Ecotox. Environ. Safe. 1988, 16, 25-35.
  •  
  • 176. Suleiman, G. S. A.; Zeng, X. Recent Advances and Challenges in Thermal Stability of PVA-based Film: A Review. Polym. Adv. Technol. 2024, 35, e6327.
  •  
  • 177. Ullah, M.; Weng, C.-H. Degradation of Polyvinyl Alcohol by a Novel Bacterial Strain Stenotrophomonas sp. SA21. Environ. Technol. 2018, 39, 2056-2061.
  •  
  • 178. Huang, J.; Yang, S. Performance and Diversity of Polyvinyl Alcohol-degrading Bacteria Under Aerobic and Anaerobic Conditions. Biotechnol. Lett. 2016, 38, 1875-1880.
  •  
  • 179. Lee, J.-A.; Kim, M.-N. J. P. D. Isolation of New and Potent Poly (vinyl alcohol)-degrading Strains and Their Degradation Activity. Polym. Degrad. Stabil. 2003, 81, 303-308.
  •  
  • 180. Matsumura, S.; Shimura, Y. Effects of Molecular Weight and Stereoregularity on Biodegradation of Poly(vinyl alcohol) by Alcaligenes Faecalis. Biotechnol. Lett. 1994, 16, 1205-1210.
  •  
  • 181. Watanabe, Y.; Hamada, N. Purification and Properties of a Polyvinyl Alcohol-degrading Enzyme Produced by a Strain of Pseudomonas. Arch. Biochem. Biophys. 1976, 174, 575-581.
  •  
  • 182. Ronkvist, Å. M.; Lu, W. Cutinase-catalyzed Deacetylation of Poly(vinyl acetate). Macromolecules 2009, 42, 6086-6097.
  •  
  • 183. Fukae, R.; Fujii, T. Biodegradation of Poly(vinyl alcohol) with High Isotacticity. Polym. J. 1994, 26, 1381-1386.
  •  
  • 184. Kim, B.; Sohn, C. Degradation of Polyvinyl Alcohol by Sphingomonas sp. SA3 and Its Symbiote. J. Ind. Microbiol. Biotechnol. 2003, 30, 70-74.
  •  
  • 185. Yamatsu, A.; Matsumi, R. Isolation and Characterization of a Novel Poly(vinyl alcohol)-degrading Bacterium, Sphingopyxis sp. PVA3. Appl. Microbiol. Biotechnol. 2006, 72, 804-811.
  •  
  • 186. Zhang, Y.; Li, Y. A New Strain, Streptomyces Venezuelae GY1, Producing a Poly(vinyl alcohol)-degrading Enzyme. World J. Microbiol. Biotechnol. 2006, 22, 625-628.
  •  
  • 187. Monina, A.; Apryatina, K. Biodegradable Material Based on Starch-g-polyvinyl Acetate Copolymer with Bactericidal Properties. Polym. Bull. 2024, DOI:10.1007/S00289-024-05205-0.
  •  
  • 188. Hesketh, A.; Cresswell, M. Microbial Biodegradation of Polyvinyl Acetate (PVAc) Emulsions. Int. Biodeterior. Biodegrad. 1995, 20, 288-296.
  •  
  • 189. Qian, D.; Du, G. Isolation and Culture Characterization of a New Polyvinyl Alcohol-degrading Strain: Penicillium sp. WSH02-21. World J. Microbiol. Biotechnol. 2004, 20, 587-591.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(4): 345-360

    Published online Jul 25, 2024

  • 10.7317/pk.2024.48.4.345
  • Received on May 24, 2024
  • Revised on Jun 2, 2024
  • Accepted on Jun 7, 2024

Correspondence to

  • Dongyeop X. Oh** , and Dong-Ku Kang*, ***, ****
  • *Department of Chemistry, Incheon National University, Incheon 22012, Korea
    **Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea
    ***Bioplastic Research Center, Incheon National University, Incheon 22012, Korea
    ****Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea

  • E-mail: d.oh@inha.ac.kr, dkkang@inu.ac.kr