Review
  • Review on the Utilization of Nanoparticles for Enhanced Performance of Polymer Electrolyte Membranes
  • Chanyong Lee# , Hyeyeon Jung# , Jungchul Noh*, and Sungyeon Heo  

  • Department of Chemical and Biomolecular Engineering, Seoul National University of Science & Technology, Seoul 01811, Korea
    *McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA

  • 고분자 전해질 막의 성능 향상을 위한 나노입자 활용 연구 동향
  • 이찬용# · 정혜연# · 노정철* · 허성연  

  • 서울과학기술대학교 화공생명공학과
    *텍사스대학교 오스틴 캠퍼스 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; Huo, S.; Brandon, N. P.; Yin, Y.; Guiver, M. D. Designing the next Generation of Proton-Exchange Membrane Fuel Cells. Nature 2021, 595, 361-369.
  •  
  • 2. Liu, S.; Chen, T.; Zhang, C.; Xie, Y. Study on the Performance of Proton Exchange Membrane Fuel Cell (PEMFC) with Dead-Ended Anode in Gravity Environment. Appl. Energy 2020, 261, 114454.
  •  
  • 3. Kraytsberg, A.; Ein-Eli, Y. Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy Fuels 2014, 28, 7303-7330.
  •  
  • 4. Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.; McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K.; Iwashita, N. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chem. Rev. 2007, 107, 3904-3951.
  •  
  • 5. Sharaf, O. Z.; Orhan, M. F. An Overview of Fuel Cell Technology: Fundamentals and Applications. Renew. Sustain. Energy Rev. 2014, 32, 810-853.
  •  
  • 6. Fan, L.; Tu, Z.; Chan, S. H. Recent Development of Hydrogen and Fuel Cell Technologies: A Review, Energy Rep. 2021, 7, 8421-8446.
  •  
  • 7. Mekhilef, S.; Saidur, R.; Safari, A. Comparative Study of Different Fuel Cell Technologies. Renew. Sustain. Energy Rev. 2012, 16, 981-989.
  •  
  • 8. Pan, M.; Pan, C.; Li, C.; Zhao, J. A Review of Membranes in Proton Exchange Membrane Fuel Cells: Transport Phenomena, Performance and Durability. Renew. Sustain. Energy Rev.2021, 141, 110771.
  •  
  • 9. Shimpalee, S.; Beuscher, U.; Van Zee, J. W. Analysis of GDL Flooding Effects on PEMFC Performance. Electrochim. Acta 2007, 52, 6748-6754.
  •  
  • 10. Asensio, J. A.; Sánchez, E. M.; Gomez-Romero, P. Proton-Conducting Membranes Based on Benzimidazole Polymers for High-Temperature PEM Fuel Cells. A Chemical Quest. Chem. Soc. Rev. 2010, 39, 3210-3239.
  •  
  • 11. Krishnan, P.; Park, J.-S.; Kim, C.-S. Performance of a Poly(2,5-Benzimidazole) Membrane Based High Temperature PEM Fuel Cell in the Presence of Carbon Monoxide. J. Power Sources 2006, 159, 817-823.
  •  
  • 12. Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chem. Rev. 2004, 104, 4587-4612.
  •  
  • 13. Saito, M.; Arimura, N.; Hayamizu, K.; Okada, T. Mechanisms of Ion and Water Transport in Perfluorosulfonated Ionomer Membranes for Fuel Cells. J. Phys. Chem. B 2004, 108, 16064-16070.
  •  
  • 14. Yin, C.; Wang, Z.; Luo, Y.; Li, J.; Zhou, Y.; Zhang, X.; Zhang, H.; Fang, P.; He, C. Thermal Annealing on Free Volumes, Crystallinity and Proton Conductivity of Nafion Membranes. J. Phys. Chem. Solids 2018, 120, 71-78.
  •  
  • 15. Kuwertz, R.; Kirstein, C.; Turek, T.; Kunz, U. Influence of Acid Pretreatment on Ionic Conductivity of Nafion® Membranes. J. Membr. Sci. 2016, 500, 225-235.
  •  
  • 16. Ahmad, H.; Kamarudin, S. K.; Hasran, U. A.; Daud, W. W. Overview of Hybrid Membranes for Direct-Methanol Fuel-Cell Applications. Int. J. Hydrog. Energy 2010, 35, 2160-2175.
  •  
  • 17. Kreuer, K.-D.; Paddison, S. J.; Spohr, E.; Schuster, M. Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology. Chem. Rev. 2004, 104, 4637-4678.
  •  
  • 18. Breslau, B. R.; Miller, I. F. A Hydrodynamic Model for Electroosmosis. Ind. Eng. Chem. Fund. 1971, 10, 554-565.
  •  
  • 19. Hogarth, W. H.; Da Costa, J. D.; Lu, G. M. Solid Acid Membranes for High Temperature (>140 ℃) Proton Exchange Membrane Fuel Cells. J. Power Sources 2005, 142, 223–237.
  •  
  • 20. Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M. Review of the Proton Exchange Membranes for Fuel Cell Applications. Int. J. Hydrog. Energy 2010, 35, 9349-9384.
  •  
  • 21. Sridhar, P.; Perumal, R.; Rajalakshmi, N.; Raja, M.; Dhathathreyan, K. S. Humidification Studies on Polymer Electrolyte Membrane Fuel Cell. J. Power Sources 2001, 101, 72-78.
  •  
  • 22. Casciola, M.; Alberti, G.; Sganappa, M.; Narducci, R. On the Decay of Nafion Proton Conductivity at High Temperature and Relative Humidity. J. Power Sources 2006, 162, 141-145.
  •  
  • 23. Wang, Z.; Tang, H.; Zhang, H.; Lei, M.; Chen, R.; Xiao, P.; Pan, M. Synthesis of Nafion/CeO2 Hybrid for Chemically Durable Proton Exchange Membrane of Fuel Cell. J. Membr. Sci. 2012, 421, 201-210.
  •  
  • 24. Thuc, V. D.; Tinh, V. D. C.; Kim, D. Simultaneous Improvement of Proton Conductivity and Chemical Stability of Nafion Membranes via Embedment of Surface-Modified Ceria Nanoparticles in Membrane Surface. J. Membr. Sci. 2022, 642, 119990.
  •  
  • 25. Jin, Y.; Qiao, S.; Zhang, L.; Xu, Z. P.; Smart, S.; da Costa, J. C. D.; Lu, G. Q. Novel Nafion Composite Membranes with Mesoporous Silica Nanospheres as Inorganic Fillers. J. Power Sources 2008, 185, 664-669.
  •  
  • 26. Ke, C.-C.; Li, X.-J.; Qu, S.-G.; Shao, Z.-G.; Yi, B.-L. Preparation and Properties of Nafion/SiO2 Composite Membrane Derived via in Situ Sol–Gel Reaction: Size Controlling and Size Effects of SiO2 Nano-Particles. Polym. Adv. Technol. 2012, 23, 92-98.
  •  
  • 27. Xu, G.; Li, S.; Li, J.; Liu, Z.; Li, Y.; Xiong, J.; Cai, W.; Qu, K.; Cheng, H. Targeted Filling of Silica in Nafion by a Modified in Situ Sol–Gel Method for Enhanced Fuel Cell Performance at Elevated Temperatures and Low Humidity. Chem. Commun. 2019, 55, 5499-5502.
  •  
  • 28. Dresch, M. A.; Matos, B. R.; Fonseca, F. C.; Santiago, E. I.; Carmo, M.; Lanfredi, A. J. C.; Balog, S. Small-Angle X-Ray and Neutron Scattering Study of Nafion-SiO2 Hybrid Membranes Prepared in Different Solvent Media. J. Power Sources 2015, 274, 560-567.
  •  
  • 29. Tang, H. L.; Pan, M. Synthesis and Characterization of a Self-Assembled Nafion/Silica Nanocomposite Membrane for Polymer Electrolyte Membrane Fuel Cells. J. Phys. Chem. C 2008, 112, 11556-11568.
  •  
  • 30. Yang, H. N.; Cho, S. H.; Kim, W. J. The Preparation of Self-Humidifying Nafion/Various Pt-Containing SiO2 Composite Membranes and Their Application in PEMFC. J. Membr. Sci. 2012, 421, 318-326.
  •  
  • 31. Chandan, A.; Hattenberger, M.; El-Kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B. G.; Ingram, A.; Bujalski, W. High Temperature (HT) Polymer Electrolyte Membrane Fuel Cells (PEMFC)–A Review. J. Power Sources 2013, 231, 264-278.
  •  
  • 32. Amjadi, M.; Rowshanzamir, S.; Peighambardoust, S. J.; Hosseini, M. G.; Eikani, M. H. Investigation of Physical Properties and Cell Performance of Nafion/TiO2 Nanocomposite Membranes for High Temperature PEM Fuel Cells. Int. J. Hydrog. Energy 2010, 35, 9252-9260.
  •  
  • 33. Santiago, E. I.; Isidoro, R. A.; Dresch, M. A.; Matos, B. R.; Linardi, M.; Fonseca, F. C. Nafion–TiO2 Hybrid Electrolytes for Stable Operation of PEM Fuel Cells at High Temperature. Electrochim. Acta 2009, 54, 4111-4117.
  •  
  • 34. Sacca, A.; Carbone, A.; Passalacqua, E.; D’epifanio, A.; Licoccia, S.; Traversa, E.; Sala, E.; Traini, F.; Ornelas, R. Nafion–TiO2 Hybrid Membranes for Medium Temperature Polymer Electrolyte Fuel Cells (PEFCs). J. Power Sources 2005, 152, 16-21.
  •  
  • 35. Wehkamp, N.; Breitwieser, M.; Büchler, A.; Klingele, M.; Zengerle, R.; Thiele, S. Directly Deposited Nafion/TiO2 Composite Membranes for High Power Medium Temperature Fuel Cells. RSC Adv. 2016, 6, 24261-24266.
  •  
  • 36. Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027-6053.
  •  
  • 37. Fu, X.; Lin, J.; Liang, Z.; Yao, R.; Wu, W.; Fang, Z.; Zou, W.; Wu, Z.; Ning, H.; Peng, J. Graphene Oxide as a Promising Nanofiller for Polymer Composite. Surf. Interfaces 2023, 37, 102747.
  •  
  • 38. Chien, H.-C.; Tsai, L.-D.; Huang, C.-P.; Kang, C.; Lin, J.-N.; Chang, F.-C. Sulfonated Graphene Oxide/Nafion Composite Membranes for High-Performance Direct Methanol Fuel Cells. Int. J. Hydrog. Energy 2013, 38, 13792-13801.
  •  
  • 39. Heo, Y.; Im, H.; Kim, J. The Effect of Sulfonated Graphene Oxide on Sulfonated Poly (Ether Ether Ketone) Membrane for Direct Methanol Fuel Cells. J. Membr. Sci. 2013, 425, 11-22.
  •  
  • 40. Tseng, C.; Ye, Y.; Cheng, M.; Kao, K.; Shen, W.; Rick, J.; Chen, J.; Hwang, B. Sulfonated Polyimide Proton Exchange Membranes with Graphene Oxide Show Improved Proton Conductivity, Methanol Crossover Impedance, and Mechanical Properties. Adv. Energy Mater. 2011, 1, 1220-1224.
  •  
  • 41. Choi, B. G.; Hong, J.; Park, Y. C.; Jung, D. H.; Hong, W. H.; Hammond, P. T.; Park, H. Innovative Polymer Nanocomposite Electrolytes: Nanoscale Manipulation of Ion Channels by Functionalized Graphenes. ACS Nano 2011, 5, 5167-5174.
  •  
  • 42. Zhang, H.; Shen, P. K. Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chem. Rev. 2012, 112, 2780-2832.
  •  
  • 43. Lee, D. C.; Yang, H. N.; Park, S. H.; Kim, W. J. Nafion/Graphene Oxide Composite Membranes for Low Humidifying Polymer Electrolyte Membrane Fuel Cell. J. Membr. Sci. 2014, 452, 20-28.
  •  
  • 44. Zhang, B.; Cao, Y.; Jiang, S.; Li, Z.; He, G.; Wu, H. Enhanced Proton Conductivity of Nafion Nanohybrid Membrane Incorporated with Phosphonic Acid Functionalized Graphene Oxide at Elevated Temperature and Low Humidity. J. Membr. Sci. 2016, 518, 243-253.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(6): 563-575

    Published online Nov 25, 2024

  • 10.7317/pk.2024.48.6.563
  • Received on Aug 19, 2024
  • Revised on Sep 14, 2024
  • Accepted on Sep 23, 2024

Correspondence to

  • Sungyeon Heo
  • Department of Chemical and Biomolecular Engineering, Seoul National University of Science & Technology, Seoul 01811, Korea

  • E-mail: sungyeonh@seoultech.ac.kr