Review
  • Recent Developments in an Organic Transistor-Based Gas Sensors
  • Nahyeon Gu and Yeong Don Park

  • Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea

  • 유기 트랜지스터 기반 가스 센서의 최신 연구 동향
  • 구나현 · 박영돈

  • 인천대학교 에너지화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Ma, M.; Zhang, Z.; Liao, Q.; Yi, F.; Han, L.; Zhang, G.; Liu, S.; Liao, X.; Zhang, Y. Self-powered Artificial Electronic Skin for High-resolution Pressure Sensing. Nano Energy 2017,32, 389-396.
  •  
  • 2. Chen, H.; Song, Y.; Cheng, X.; Zhang, H. Self-powered Electronic Skin Based on the Triboelectric Generator. Nano Energy 2019, 56, 252-268.
  •  
  • 3. Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B. K.; Kim, J.; Ahn, J. Graphene-based Stretchable/wearable Self-Powered Touch Sensor. Nano Energy 2019, 62, 259-267.
  •  
  • 4. Dong, K.; Wu, Z.; Deng, J.; Wang, A. C.; Zou, H.; Chen, C.; Hu, D.; Gu, B.; Sun, B.; Wang, Z. L. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing. Adv. Mater. 2018, 30, 1804944.
  •  
  • 5. Ha, M.; Lim, S.; Cho, S.; Lee, Y.; Na, S.; Baig, C.; Ko, H. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors. ACS Nano 2018, 12, 3964-3974.
  •  
  • 6. Liu, Y.; Pharr, M.; Salvatore, G. A. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano 2017, 11, 9614-9635.
  •  
  • 7. Pang, C.; Lee, G.; Kim, T.; Kim, S. M.; Kim, H. N.; Ahn, S.; Suh, K. A Flexible and Highly Sensitive Strain-gauge Sensor Using Reversible Interlocking of Nanofibres. Nature Materials 2012, 11, 795-801.
  •  
  • 8. Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z. L. Recent Progress in Electronic Skin. Advanced Science 2015, 2, 1500169.
  •  
  • 9. Someya, T.; Dodabalapur, A.; Huang, J.; See, K. C.; Katz, H. E. Chemical and Physical Sensing by Organic Field-Effect Transistors and Related Devices. Adv. Mater. 2010, 22, 3799-3811.
  •  
  • 10. Sokolov, A. N.; Tee, B. C.; Bettinger, C. J.; Tok, J. B.; Bao, Z. Chemical and Engineering Approaches to Enable Organic Field-Effect Transistors for Electronic Skin Applications. Acc. Chem. Res. 2012, 45, 361-371.
  •  
  • 11. Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G. Organic Field-effect Transistor Sensors: a Tutorial Review. Chem. Soc. Rev. 2013, 42, 8612-8628.
  •  
  • 12. Baeg, K.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25, 4267-4295.
  •  
  • 13. Cramer, T.; Campana, A.; Leonardi, F.; Casalini, S.; Kyndiah, A.; Murgia, M.; Biscarini, F. Water-gated Organic Field Effect Transistors - Opportunities for Biochemical Sensing and Extracellular Signal Transduction. J. Mater. Chem. B 2013, 1, 3728-3741.
  •  
  • 14. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev. 2012, 112, 2208-2267.
  •  
  • 15. Gelinck, G.; Heremans, P.; Nomoto, K.; Anthopoulos, T. D. Organic Transistors in Optical Displays and Microelectronic Applications. Adv. Mater. 2010, 22, 3778-3798.
  •  
  • 16. Guo, Y.; Yu, G.; Liu, Y. Functional Organic Field-Effect Transistors. Adv. Mater. 2010, 22, 4427-4447.
  •  
  • 17. Sirringhaus, H. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Adv. Mater. 2014, 26, 1319-1335.
  •  
  • 18. Someya, T.; Dodabalapur, A.; Huang, J.; See, K. C.; Katz, H. E. Chemical and Physical Sensing by Organic Field-Effect Transistors and Related Devices. Adv. Mater. 2010, 22, 3799-3811.
  •  
  • 19. Torsi, L.; Dodabalapur, A. Organic Thin-film Transistors as Plastic Analytical Sensors. Anal. Chem. 2005, 77, 380A-387A.
  •  
  • 20. Zhang, C.; Chen, P.; Hu, W. Organic Field-effect Transistor-based Gas Sensors. Chem. Soc. Rev. 2015, 44, 2087-2107.
  •  
  • 21. Wang, T.; Ma, S.; Lv, A.; Liu, F.; Yin, X. Concentration Recognition of Gas Sensor with Organic Field-effect Transistor Assisted by Artificial Intelligence. Sensors and Actuators B-Chemical 2022, 363, 131854.
  •  
  • 22. eo Y; Jung Hun Lee J. H; Jang H. W; Lee W. H. Recent Research Trend in Flexible and Stretchable Electrode for Wearable Device. KIC NEWS. 2018, 21, 34-44.
  •  
  • 23. Hodgkinson, J.; Tatam, R. P. Optical Gas Sensing: a Review. Measurement Sci. Technol. 2013, 24, 012004.
  •  
  • 24. Coban, O.; Tekmen, S.; Gur, E.; Tuzemen, S. High Optical Response NiO, Pd/NiO and Pd/WO3 Hydrogen Sensors. Int. J. Hydrogen Energy 2022, 47, 25454-25464.
  •  
  • 25. Wang, T.; Zhu, L.; Yue, Y.; Asghari, M. R.; Samani, B. H.; Yamamoto, T.; Mukai, Y.; Kanda, H. N,N-Dimethylformamide Detection and Refractive Index Sensing Using an Electrospun Polymer/Ti3C2 MXene-TiO2 Modified Optical Fiber Sensor. Sensors and Actuators B-Chemical 2024, 417, 136143.
  •  
  • 26. Zhao, Y.; Liu, Y.; Liu, Q.; Zhao, J.; Zhang, Y. Room-Temperature Operated Fast Reversible Ammonia Sensor Based on Hybrid Optical Fiber Structure with Temperature Compensated Function. Sensors and Actuators B-Chem. 2024, 408, 135472.
  •  
  • 27. Arroyo, P.; Gomez-Suarez, J.; Luis Herrero, J.; Lozano, J. Electrochemical Gas Sensing Module Combined with Unmanned Aerial Vehicles for Air Quality Monitoring. Sensors and Actuators B-Chem. 2022, 364, 131815.
  •  
  • 28. Gatty, H. K.; Leijonmarck, S.; Antelius, M.; Stemme, G.; Roxhed, N. An Amperometric Nitric Oxide Sensor with Fast Response and Ppb-level Concentration Detection Relevant to Asthma Monitoring. Sensors and Actuators B-Chemical 2015, 209, 639-644.
  •  
  • 29. Okamura, K.; Ishiji, T.; Iwaki, M.; Suzuki, Y.; Takahashi, K. Electrochemical Gas Sensor Using a Novel Gas Permeable Electrode Modified by Ion Implantation. Surf. Coat. Technol. 2007, 201, 8116-8119.
  •  
  • 30. Cho, H.; Noh, Y.; Jin, E.; Yim, J. Study on the Hybrid Dual-functioning Application of Urethane Foam Modified with Graphene Oxide and Polypyrrole for an Electrode Scaffold as Well as Chemical Sensor. Polym. Korea 2023, 47, 453-462.
  •  
  • 31. Bekyarova, E.; Davis, M.; Burch, T.; Itkis, M. E.; Zhao, B.; Sunshine, S.; Haddon, R. C. Chemically Functionalized Single-walled Carbon Nanotubes as Ammonia Sensors. J. Phys. Chem. B 2004, 108, 19717-19720.
  •  
  • 32. Shin, J.; Choi, S.; Lee, I.; Youn, D.; Park, C. O.; Lee, J.; Tuller, H. L.; Kim, I. Thin-Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes. Adv. Funct. Mater. 2013, 23, 2357-2367.
  •  
  • 33. Zhu, G.; Xi, C.; Xu, H.; Zheng, D.; Liu, Y.; Xu, X.; Shen, X. Hierarchical NiO Hollow Microspheres Assembled from Nanosheet-stacked Nanoparticles and Their Application in a Gas Sensor. RSC Advances 2012, 2, 4236-4241.
  •  
  • 34. Kim, H.; Yoon, J.; Choi, K.; Jang, H. W.; Umar, A.; Lee, J. Ultraselective and Sensitive Detection of Xylene and Toluene for Monitoring Indoor Air Pollution Using Cr-Doped NiO Hierarchical Nanostructures. Nanoscale 2013, 5, 7066-7073.
  •  
  • 35. Li, E.; Cheng, Z.; Xu, J.; Pan, Q.; Yu, W.; Chu, Y. Indium Oxide with Novel Morphology: Synthesis and Application in C2H5OH Gas Sensing. Crystal Growth & Design 2009, 9, 2146-2151.
  •  
  • 36. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts. Appl. Phys. Lett. 2002, 81, 1869-1871.
  •  
  • 37. Hong, S.; Wu, M.; Hong, Y.; Jeong, Y.; Jung, G.; Shin, W.; Park, J.; Kim, D.; Jang, D.; Lee, J. FET-type Gas Sensors: A Review. Sensors and Actuators B-Chem. 2021, 330, 129240.
  •  
  • 38. Liao, F.; Chen, C.; Subramanian, V. Organic TFTs as Gas Sensors for Electronic Nose Applications. Sensors and Actuators B- Chem. 2005, 107, 849-855.
  •  
  • 39. Zan, H.; Li, C.; Yeh, C.; Dai, M.; Meng, H.; Tsai, C. Room-temperature-operated Sensitive Hybrid Gas Sensor Based on Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors. Appl. Phys. Lett. 2011, 98, 253503.
  •  
  • 40. He, Q.; Zeng, Z.; Yin, Z.; Li, H.; Wu, S.; Huang, X.; Zhang, H. Fabrication of Flexible MoS2 Thin-Film Transistor Arrays for Practical Gas-Sensing Applications. Small 2012, 8, 2994-2999.
  •  
  • 41. Gergintschew, Z.; Kornetzky, P.; Schipanski, D. The Capacitively Controlled Field Effect Transistor (CCFET) as a New Low Power Gas Sensor. Sensors and Actuators B-Chem. 1996, 36, 285-289.
  •  
  • 42. Oprea, A.; Frerichs, H.; Wilbertz, C.; Lehmann, M.; Weimar, U. Hybrid Gas Sensor Platform Based on Capacitive Coupled Field Effect Transistors: Ammonia and Nitrogen Dioxide Detection. Sensors and Actuators B-Chem. 2007, 127, 161-167.
  •  
  • 43. Kim, C.; Cho, I.; Shin, J.; Choi, K.; Lee, J.; Lee, J. A New Gas Sensor Based on MOSFET Having a Horizontal Floating-Gate. IEEE Electron Device Lett. 2014, 35, 265-267.
  •  
  • 44. Rubio, R.; Santander, J.; Marco, S.; Fonseca, L.; Fonollosa, J.; Moreno, M. Non-selective NDIR Array for Gas Detection. Smart Sensors, Actuators, and MEMS II 2005, 5836, 239-246.
  •  
  • 45. Zhao, P.; Krishnaiah, K. V.; Guo, L.; Li, T.; Ho, H. L.; Zhang, A. P.; Jin, W. Ultraminiature Optical Fiber-Tip 3D-Microprinted Photothermal Interferometric Gas Sensors. Laser & Photonics Reviews 2024, 18, 2301285.
  •  
  • 46. Huebert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors - A review. Sensors and Actuators B-Chem. 2011, 157, 329-352.
  •  
  • 47. Mohseni Taromsari, S.; Shi, H. H.; Habibpour, S.; Kiddell, S.; Yu, A.; Park, C. B.; Naguib, H. E. An Ultra-Sensitive and Stable Electrochemical Sensor with an Expanded Working Range via in situ Assembly of 3-D Structures Based on MXene/GnR Nanohybrids. J. Mater. Chem. A 2023, 11, 10748-10765.
  •  
  • 48. Donarelli, M.; Prezioso, S.; Perrozzi, F.; Bisti, F.; Nardone, M.; Giancaterini, L.; Cantalini, C.; Ottaviano, L. Response to NO2 and Other Gases of Resistive Chemically Exfoliated MoS2-based Gas Sensors. Sensors and Actuators B-Chem. 2015, 207, 602-613.
  •  
  • 49. Lee, K.; Gatensby, R.; McEvoy, N.; Hallam, T.; Duesberg, G. S. High-Performance Sensors Based on Molybdenum Disulfide Thin Films. Adv. Mater. 2013, 25, 6699-6702.
  •  
  • 50. Devara, I. K. G.; Kwon, M. J.; Cho, S.; Kwon, D.; Park, J. H. Enhanced Sensitivity of Zero-bias-operated MXene Chemiresistive Sensor via Lignin Hybridization. Ecomat 2024, 6, e12453.
  •  
  • 51. Grassi, M.; Malcovati, P.; Baschirotto, A. A 141-dB Dynamic Range CMOS Gas-sensor Interface Circuit without Calibration with 16-bit Digital Output Word. IEEE J Solid State Circuits 2007, 42, 1543-1554.
  •  
  • 52. Lu, J.; Liu, D.; Zhou, J.; Chu, Y.; Chen, Y.; Wu, X.; Huang, J. Porous Organic Field-Effect Transistors for Enhanced Chemical Sensing Performances. Adv. Funct. Mater. 2017, 27, 1700018.
  •  
  • 53. Klauk, H. Organic Thin-film Transistors. Chem. Soc. Rev. 2010, 39, 2643-2666.
  •  
  • 54. Ren, X.; Yang, F.; Gao, X.; Cheng, S.; Zhang, X.; Dong, H.; Hu, W. Organic Field-Effect Transistor for Energy-Related Applications: Low-Power-Consumption Devices, Near-Infrared Phototransistors, and Organic Thermoelectric Devices. Adv. Energy Mater. 2018, 8, 1801003.
  •  
  • 55. Minder, N. A.; Lu, S.; Fratini, S.; Ciuchi, S.; Facchetti, A.; Morpurgo, A. F. Tailoring the Molecular Structure to Suppress Extrinsic Disorder in Organic Transistors. Adv. Mater. 2014, 26, 1254-1260.
  •  
  • 56. Li, Y.; Sonar, P.; Murphy, L.; Hong, W. High Mobility Diketopyrrolopyrrole (DPP)-based Organic Semiconductor Materials for Organic Thin Film Transistors and Photovoltaics. Energy Environm. Sci. 2013, 6, 1684-1710.
  •  
  • 57. Yi, H. T.; Payne, M. M.; Anthony, J. E.; Podzorov, V. Ultra-flexible Solution-processed Organic Field-effect Transistors. Nat. Commun. 2012, 3, 1259.
  •  
  • 58. Fukuda, K.; Takeda, Y.; Yoshimura, Y.; Shiwaku, R.; Lam Truc Tran; Sekine, T.; Mizukami, M.; Kumaki, D.; Tokito, S. Fully-Printed High-performance Organic Thin-film Transistors and Circuitry on One-micron-thick polymer films. Nat. Commun. 2014, 5, 4147.
  •  
  • 59. Lee, Y.; Shin, M.; Thiyagarajan, K.; Jeong, U. Approaches to Stretchable Polymer Active Channels for Deformable Transistors. Macromolecules 2016, 49, 433-444.
  •  
  • 60. Oh, J. Y.; Rondeau-Gagne, S.; Chiu, Y.; Chortos, A.; Lissel, F.; Wang, G. N.; Schroeder, B. C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; Xu, J.; Zhu, C.; Gu, X.; Bae, W.; Kim, Y.; Jin, L.; Chung, J. W.; Tok, J. B.; Bao, Z. Intrinsically Stretchable and Healable Semiconducting Polymer for Organic Transistors. Nature 2016, 539, 411-415.
  •  
  • 61. Arias, A. C.; MacKenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A. Materials and Applications for Large Area Electronics: Solution-Based Approaches. Chem. Rev. 2010, 110, 3-24.
  •  
  • 62. Islam, A. E. Current Status of Reliability in Extended and Beyond CMOS Devices. Ieee Transactions on Device and Mater. Reliability 2016, 16, 647-666.
  •  
  • 63. Petti, L.; Muenzenrieder, N.; Vogt, C.; Faber, H.; Buethe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T. D.; Troester, G. Metal Oxide Semiconductor Thin-film Transistors for Flexible Electronics. Appl. Phys. Rev. 2016, 3, 021303.
  •  
  • 64. Di, C.; Liu, Y.; Yu, G.; Zhu, D. Interface Engineering: An Effective Approach toward High-Performance Organic Field-Effect Transistors. Acc. Chem. Res. 2009, 42, 1573-1583.
  •  
  • 65. Chakravarty, S.; Datta, A.; Sen Sarma, N. An Electrical Solid-state Sulphur Dioxide Vapour Sensor Based on a Polyvinyl Alcohol Formaldehyde Composite. J. Mater. Chem. C 2017, 5, 2871-2882.
  •  
  • 66. Nketia-Yawson, B.; Jung, A.; Noh, Y.; Ryu, G.; Tabi, G. D.; Lee, K.; Kim, B.; Noh, Y. Highly Sensitive Flexible NH3 Sensors Based on Printed Organic Transistors with Fluorinated Conjugated Polymers. ACS Appl. Mater. Interfaces 2017, 9, 7322-7330.
  •  
  • 67. Liu, S.; Wang, H.; Wang, X.; Li, S.; Liu, H.; Chen, Y.; Li, X. Diverse Sensor Responses from Two Functionalized Tris(phthalocyaninato) europium Ambipolar Semiconductors Towards Three Oxidative and Reductive Gases. J. Mater. Chem. C 2019, 7, 424-433.
  •  
  • 68. Yang, Y.; Katz, H. E. Hybrid of P3HT and ZnO@GO Nanostructured Particles for Increased NO2 Sensing Response. J. Mater. Chem. C 2017, 5, 2160-2166.
  •  
  • 69. Kim, Y.; An, T. K.; Kim, J.; Hwang, J.; Park, S.; Nam, S.; Cha, H.; Park, W. J.; Baik, J. M.; Park, C. E. A Composite of a Graphene Oxide Derivative as a Novel Sensing Layer in an Organic Field-effect Transistor. J. Mater. Chem. C 2014, 2, 4539-4544.
  •  
  • 70. Zhou, X.; Niu, K.; Wang, Z.; Huang, L.; Chi, L. An Ammonia Detecting Mechanism for Organic Transistors as Revealed by Their Recovery Processes. Nanoscale 2018, 10, 8832-8839.
  •  
  • 71. Luo, H.; Chen, S.; Liu, Z.; Zhang, C.; Cai, Z.; Chen, X.; Zhang, G.; Zhao, Y.; Decurtins, S.; Liu, S.; Zhang, D. A Cruciform Electron Donor-Acceptor Semiconductor with Solid-State Red Emission: 1D/2D Optical Waveguides and Highly Sensitive/Selective Detection of H2S Gas. Adv. Funct. Mater. 2014, 24, 4250-4258.
  •  
  • 72. Li, M.; Han, S.; Zhou, Y. Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors. Adv. Intelligent Systems 2020, 2, 2000113.
  •  
  • 73. Wu, M.; Hou, S.; Yu, X.; Yu, J. Recent Progress in Chemical Gas Sensors Based on Organic Thin Film Transistors. J. Mater. Chem. C 2020, 8, 13482-13500.
  •  
  • 74. Kwak, D.; Lei, Y.; Maric, R. Ammonia Gas Sensors: A Comprehensive Review. Talanta 2019, 204, 713-730.
  •  
  • 75. Wang, Z.; Huang, L.; Zhu, X.; Zhou, X.; Chi, L. An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films. Adv. Mater. 2017, 29, 1703192.
  •  
  • 76. Khim, D.; Ryu, G.; Park, W.; Kim, H.; Lee, M.; Noh, Y. Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors. Adv. Mater. 2016, 28, 2752-2759.
  •  
  • 77. Zhuang, X.; Han, S.; Huai, B.; Shi, W.; Yu, J. Sub-ppm and High Response Organic Thin-film Transistor NO2 Sensor Based on Nanofibrillar Structured TIPS-pentacene. Sensors and Actuators B-Chem. 2019, 279, 238-244.
  •  
  • 78. Das, A.; Dost, R.; Richardson, T.; Grell, M.; Morrison, J. J.; Turner, M. L. A Nitrogen Dioxide Sensor Based on an Organic Transistor Constructed from Amorphous Semiconducting Polymers. Adv. Mater. 2007, 19, 4018-4023.
  •  
  • 79. Chae, H.; Han, J. M.; Ahn, Y.; Kwon, J. E.; Lee, W. H.; Kim, B. NO2-Affinitive Amorphous Conjugated Polymer for Field-Effect Transistor Sensor toward Improved NO2 Detection Capability. Adv. Mater. Technologies 2021, 6, 2100580.
  •  
  • 80. Jang, D.; Park, S. Y.; Lee, H. S.; Park, Y. D. Low-Regioregularity Polythiophene for a Highly Sensitive and Stretchable Gas Sensor. ACS Appl. Mater. Interfaces 2023, 15, 32629-32636.
  •  
  • 81. Seo, Y.; Lee, J. H.; Anthony, J. E.; Nguyen, K. V.; Kim, Y. H.; Jang, H. W.; Ko, S.; Cho, Y.; Lee, W. H. Effects of Grain Boundary Density on the Gas Sensing Properties of Triethylsilylethynyl-Anthradithiophene Field-Effect Transistors. Adv. Mater. Interfaces 2018, 5, 1701399.
  •  
  • 82. Van Tran, V.; Jeong, G.; Wi, E.; Lee, D.; Chang, M. Design and Fabrication of Ultrathin Nanoporous Donor-Acceptor Copolymer-Based Organic Field-Effect Transistors for Enhanced VOC Sensing Performance. ACS Appl. Mater. Interfaces 2023, 15, 21270-21283.
  •  
  • 83. Gao, L.; Liu, C.; Peng, Y.; Deng, J.; Hou, S.; Cheng, Y.; Huang, W.; Yu, J. Ultrasensitive Flexible NO2 Gas Sensors via Multilayer Porous Polymer Film. Sensors and Actuators B-Chem. 2022, 368, 132113.
  •  
  • 84. Yuvaraja, S.; Surya, S. G.; Chernikova, V.; Vijjapu, M. T.; Shekhah, O.; Bhatt, P. M.; Chandra, S.; Eddaoudi, M.; Salama, K. N. Realization of an Ultrasensitive and Highly Selective OFET NO2 Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin-MOF. ACS Appl. Mater. Interfaces 2020, 12, 18748-18760.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(6): 576-585

    Published online Nov 25, 2024

  • 10.7317/pk.2024.48.6.576
  • Received on Aug 20, 2024
  • Revised on Oct 10, 2024
  • Accepted on Oct 18, 2024

Correspondence to

  • Yeong Don Park
  • Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea

  • E-mail: ydpark@inu.ac.kr