Article
  • Development of Stretchable Low-Dielectric Film Using Hydrophobic PDMS with Porous Silica and Surfactant
  • Moses Gu, Hwangbo Yuhwan, Seonwoo Kim*, Yubin Kim*, Se-Hoon Park*, Sung-Hoon Choa , and Hyun Jin Nam*,†

  • Department of Semiconductor Engineering, Seoul National University of Science and Technology, Gongneung-ro 232, Nowon-gu, Seoul 01811, Korea
    *ICT device Packaging Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13509, Korea

  • 다공성 실리카와 계면활성제를 활용한 소수성 PDMS 기반 신축 가능한 저유전 필름 개발
  • 구모세· 황보유환 · 김선우* · 김유빈* · 박세훈* · 좌성훈 · 남현진*,†

  • 서울과학기술대학교 일반대학원 지능형반도체공학과
    *한국전자기술연구원 ICT디바이스패키징연구센터

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Liu, Y.; Qian, C.; Qu, Y.; Wu, Y.; Zhang, X.; Wu, B.; Zou, W.; Chen, Z.; Chen, Z.; Chi, A. A Bulk Dielectric Polymer Film with Intrinsic Ultralow Dielectric Constant and Out-standing Comprehensive Properties. Chem. Mater. 2015, 27, 6543-6549.
  •  
  • 2. Jiang, Q.; Zhang, W.; Hao, J.; Wei, Y.; Mu, J.; Jiang, Z. A Unique “cage–cage” Shaped Hydrophobic Fluoropolymer Film Derived From a Novel Double-decker Structural POSS with a Low Dielectric Constant, J. Mater. Chem. C 2015, 3, 11729-11734.
  •  
  • 3. Shi, C.; Liu, S.; Li, Y.; Yuan, Y.; Zhao, J.; Fu, Y. Imparting Low Dielectric Constant and High Modulus to Polyimides via Synergy Between Coupled Silsesquioxanes and Crown Ethers, Compos. Sci. Technol. 2017, 142, 117-123.
  •  
  • 4. Wang, L.; Liu, X.; Liu, C.; Zhou, X.; Liu, C.; Cheng, M.; Wei, R.; Liu, X. Ultralow Dielectric Constant Polyarylene Ether Nitrile Foam with Excellent Mechanical Properties. J. Chem. Eng. 2020, 384, 123231.
  •  
  • 5. Liao, W. H.; Yang, S. Y.; Hsiao, S. T.; Wang, Y. S.; Li, S. M.; Ma, C. C. M.; Tien, H. W.; Zeng, S. J. Effect of Octa (aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the Mechanical and Dielectric Properties of Polyimide Composites. ACS Appl. Mater. Interfaces 2014, 6, 15802-15812.
  •  
  • 6. Wang, J. Y.; Yang, S. Y.; Huang, Y. L.; Tien, H. W.; Chin, W. K.; Ma, C. C. M. Preparation and Properties of Graphene Oxide/polyimide Composite Films With Low Dielectric Constant and Ultrahigh Strength via in situ Polymerization. J. Mater. Chem. 2011, 21, 13569-13575.
  •  
  • 7. Eslava, S.; Zhang, L.; Esconjauregui, S.; Yang, J.; Vanstreels, K.; Baklanov, M. R.; Saiz, E. Metal-organic Framework ZIF-8 Films as Low-κ Dielectrics in Microelectronics. Chem. Mater. 2013, 25, 27-33.
  •  
  • 8. Seino, M.; Wang, W.; Lofgreen, J. E.; Puzzo, D. P.; Manabe, T.; Ozin, G. A. Low-k Periodic Mesoporous Organosilica with Air Walls: POSS-PMO. J. Am. Chem. Soc. 2011, 133, 18082-18085.
  •  
  • 9. Yuan, C.; Jin, K.; Li, K.; Diao, S.; Tong, J.; Fang, Q. Non-porous Low-k Dielectric Films Based on a New Structural Amorphous Fluoropolymer. Adv. Mater. 2013, 25, 4875-4878.
  •  
  • 10. Sun, Y.; Krishtab, M.; Struyf, H.; Verdonck, P.; De Feyter, S.; Baklanov, M. R.; Armini, S. Impact of Plasma Pretreatment and Pore Size on the Sealing of Ultra-low-k Dielectrics by Self-assembled Monolayers. Langmuir 2014, 30, 3832-3844.
  •  
  • 11. Tao, L.; Yang, H.; Liu, J.; Fan, L.; Yang, S. Synthesis of Fluorinated Polybenzoxazoles with Low Dielectric Constants. J. Polym. Sci. Pol. Chem. 2010, 48, 4668-4680.
  •  
  • 12. Tao, L.; Yang, H.; Liu, J.; Fan, L.; Yang, S. Synthesis and Characterization of Highly Optical Transparent and Low Dielectric Constant Fluorinated Polyimides. Polymer 2009, 50, 6009-6018.
  •  
  • 13. Cardoso, V. F.; Costa, C. M.; Sencadas, V.; Botelho, G.; Gómez-Ribelles, J. L.; Lanceros-Mendez, S. Tailoring Porous Structure of Ferroelectric Poly(vinylidene fluoride-trifluoroethylene) by Controlling Solvent/polymer Ratio and Solvent Evaporation Rate. Eur. Polym. J. 2011, 47, 2442-2450.
  •  
  • 14. Zhao, G.; Ishizaka, T.; Kasai, H.; Hasegawa, M.; Furukawa, T.; Nakanishi, H.; Oikawa, H. Ultralow-dielectric-constant Films Prepared From Hollow Polyimide Nanoparticles Possessing Controllable Core Sizes. Chem. Mater. 2009, 21, 419-424.
  •  
  • 15. Zhao, B.; Zhao, C.; Wang, C.; Park, C. B. Poly(vinylidene fluoride) Foams: a Promising Low-k Dielectric and Heat-insulating Material. J. Mater. Chem. C 2018, 6, 3065-3073.
  •  
  • 16. Zhao, B.; Zhao, C.; Wang, C.; Park, C. B. Poly(vinylidene fluoride) Foams: a Promising Low-k Dielectric and Heat-insulating Material. J. Mater. Chem. C 2018, 6, 3065-3073.
  •  
  • 17. Brochu, P.; Pei, Q. Advances in Dielectric Elastomers for Actuators and Artificial Muscles. Macromol. Rapid Commun. 2010, 31, 10-36.
  •  
  • 18. Almeida, J. C.; Castro, A. G.; Salvado, I. M. M.; Margaça, F. M.; Fernandes, M. H. V. A New Approach to the Preparation of PDMS–SiO2 Based Hybrids–A Structural Study. Mater. Lett. 2014, 128, 105-109.
  •  
  • 19. Padmanathan, N.; Alagar, M. Design of Hydrophobic Polydimethylsiloxane and Polybenzoxazine Hybrids for Interlayer Low-k Dielectrics. New. J. Chem. 2015, 39, 3995-4008.
  •  
  • 20. Qi, D.; Zhang, K.; Tian, G.; Jiang, B.; Huang, Y. Stretchable Electronics Based on PDMS Substrates. Adv. Mater. 2021, 33, 2003155.
  •  
  • 21. Miao, L.; Guo, H.; Wan, J.; Wang, H.; Song, Y.; Chen, H.; Chen, X.; Zhang, H. Localized Modulus-controlled PDMS Substrate for 2D and 3D Stretchable Electronics. J. Micromech. Microeng. 2020, 30, 045001.
  •  
  • 22. Pan, P.; Bian, Z.; Song, X.; Zhou, X. Properties of Porous PDMS and Stretchability of Flexible Electronics in Moist Environment. J. Appl. Mech. 2020, 87, 101009.
  •  
  • 23. Zhou, Z.; Wang, H.; Zhu, Z.; Yang, H.; Zhang, Q. Enhanced Dielectric, Electromechanical and Hydrophobic Behaviors of Core-shell AgNWs@SiO2/PDMS Composites. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 563, 59-67.
  •  
  • 24. Zhang, Q.; Zhu, Z.; Shen, D.; Yang, H. Enhanced Dielectric and Hydrophobic Properties of PDMS/P(VDF-TrFE) Blend Films by Embedding PS Microspheres. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 569, 171-178.
  •  
  • 25. Lv, P.; Dong, Z.; Dai, X.; Qiu, X. Flexible Polydimethylsiloxane-based Porous Polyimide Films with An Ultralow Dielectric Constant and Remarkable Water Resistance. ACS Appl. Polym. Mater. 2019, 1, 2597-2605.
  •  
  • 26. Tang, J.; Guo, H.; Zhao, M.; Yang, J.; Tsoukalas, D.; Zhang, B.; Liu, J.; Xue, C.; Zhang, W. Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates. Sci. Rep. 2015, 5, 16527.
  •  
  • 27. Ryspayeva, A.; Jones, T. D.; Esfahani, M. N.; Shuttleworth, M. P.; Harris, R. A.; Kay, R. W.; Desmulliez, M. P. Y.; Marques-Hueso, J. A Rapid Technique for the Direct Metallization of PDMS Substrates for Flexible and Stretchable Electronics Applications. Microelectron. Eng. 2019, 209, 35-40.
  •  
  • 28. Xu, L.; Xu, G.; Liu, T.; Chen, Y.; Gong, H. The Comparison of Rheological Properties of Aqueous Welan Gum and Xanthan Gum Solutions. Carbohydr. Polym. 2013, 92, 516-522.
  •  
  • 29. Corzo, I. J. M.; da Fonsêca, J. H. L.; d’Ávila, M. A. Influence of Carboxymethyl Cellulose Solutions on Rheological Properties of Laponite Dispersions. Rheol. Acta 2023, 62, 393-404.
  •  
  • 30. Shen, J.; Luo, A.; Yao, L.; Lin, X.; Zhou, B.; Wu, G.; Ni, X. Low Dielectric Constant Silica Films with Ordered Nanoporous Structure. Mater. Sci. Eng. C 2007, 27, 1145-1148.
  •  
  • 31. Hu, C.; Liu, P. Preparation and Microwave Dielectric Properties of SiO2 Ceramics by Aqueous Sol–Gel Technique. J. Alloys Compd. 2013, 559, 129-133.
  •  
  • 32. Wang, J.; Wu, Y.; Cao, Y.; Li, G.; Liao, Y. Influence of Surface Roughness on Contact Angle Hysteresis and Spreading Work. Colloid Polym. Sci. 2020, 298, 1107-1112.
  •  
  • 33. Liu, Q.; Yu, J.; Wang, H. The Role of the Substrate Roughness in Contact Angle Hysteresis and Dynamic Deviation. Int. J. Heat Mass Transf. 2020, 148, 118985.
  •  
  • 34. Grundke, K.; Pöschel, K.; Synytska, A.; Frenzel, R.; Drechsler, A.; Nitschke, M.; Cordeiro, A. L.; Uhlmann, P.; Welzel, P. B. Experimental Studies of Contact Angle Hysteresis Phenomena on Polymer Surfaces—Toward the Understanding and Control of Wettability for Different Applications. Adv. Colloid Interface Sci. 2015, 222, 350-376.
  •  
  • 35. da Silva, V. A.; Rezende, M. C. S-parameters, Electrical Permittivity, and Absorbing Energy Measurements of Carbon Nanotubes-based Composites in X-band. J. Appl. Polym. Sci. 2021, 138, 49843.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(6): 630-638

    Published online Nov 25, 2024

  • 10.7317/pk.2024.48.6.630
  • Received on May 30, 2024
  • Revised on Aug 5, 2024
  • Accepted on Aug 5, 2024

Correspondence to

  • Sung-Hoon Choa† , and Hyun Jin Nam*
  • Department of Semiconductor Engineering, Seoul National University of Science and Technology, Gongneung-ro 232, Nowon-gu, Seoul 01811, Korea
    *ICT device Packaging Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13509, Korea

  • E-mail: shchoa@seoultech.ac.kr, hjnam1203@keti.re.kr