Article
  • Formation of High-Dielectric Layers through Annealing of Polystyrene@Barium Titanate Arrays for Embedded Capacitor
  • Dieu Minh Ngo*, **, Hyeokgi Hong*, **, Sehan Yoon*, **, and Hyun Min Jung*, **,†

  • *Department of Applied Chemistry, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Korea
    **Department of Energy Engineering Convergence, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Korea

  • 폴리스타이렌@바륨타이타네이트 입자 배열과 융착을 통한 임베디드 커패시터용 고유전 박막 형성
  • Dieu Minh Ngo*, ** · 홍혁기*, ** · 윤세한*, ** · 정현민*, **,†

  • *국립금오공과대학교 응용화학과, **국립금오공과대학교 에너지공학융합전공

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Liang, X.; Yu, X.; Lv, L.; Zhao, T.; Luo, S.; Yu, S.; Sun, R.; Wong, C.-P.; Zhu, P. BaTiO3 Internally Decorated Hollow Porous Carbon Hybrids as Fillers Enhancing Dielectric and Energy Storage Performance of Sandwich-Structured Polymer Composite. Nano. Energy. 2020, 68, 104351.
  •  
  • 2. Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S.; Zhang, G.; Li, H. U.; Iagodkine, E.; Haque, A.; Chen, L.-Q.; Jackson, T. N.; Wang, Q. Flexible High-Temperature Dielectric Materials from Polymer Nanocomposites. Nature. 2015, 523, 576-579.
  •  
  • 3. Palneedi, H.; Peddigari, M.; Hwang, G.; Jeong, D.; Ryu, J. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Adv. Funct. Mater. 2018, 28, 1803665.
  •  
  • 4. Wei, J.; Zhu, L. Intrinsic Polymer Dielectrics for High Energy Density and Low Loss Electric Energy Storage. Prog. Polym. Sci. 2020, 106, 101254.
  •  
  • 5. Yao, L.; Pan, Z.; Zhai, J.; Chen, H. H. D. Novel Design of Highly [110]-Oriented Barium Titanate Nanorod Array and Its Application in Nanocomposite Capacitors. Nanoscale 2017, 9, 4255-4264.
  •  
  • 6. Ma, Q.; Mimura, K.; Kato, K. Tuning Shape of Barium Titanate Nanocubes by Combination of Oleic Acid/Tert-Butylamine through Hydrothermal Process. J. Alloys Comp. 2016, 655, 71-78.
  •  
  • 7. Hong, K.; Lee, T. H.; Suh, J. M.; Yoon, S.-H.; Jang, H. W. Perspectives and Challenges in Multilayer Ceramic Capacitors for next Generation Electronics. J. Mater. Chem. C 2019, 7, 9782-9802.
  •  
  • 8. Tian, Z.; Wang, X.; Shu, L.; Wang, T.; Song, T.; Gui, Z.; Li, L. Preparation of Nano BaTiO3 Based Ceramics for Multilayer Ceramic Capacitor Application by Chemical Coating Method. J. American Ceramic Soc. 2009, 92, 830-833.
  •  
  • 9. Jia, W.; Hou, Y.; Zheng, M.; Xu, Y.; Zhu, M.; Yang, K.; Cheng, H.; Sun, S.; Xing, J. Advances in Lead-free High-temperature Dielectric Materials for Ceramic Capacitor Application. IET Nanodielectrics 2018, 1, 3-16.
  •  
  • 10. Ávila, H. A.; Ramajo, L. A.; Góes, M. S.; Reboredo, M. M.; Castro, M. S.; Parra, R. Dielectric Behavior of Epoxy/BaTiO3 Composites Using Nanostructured Ceramic Fibers Obtained by Electrospinning. ACS Appl. Mater. Interfaces 2013, 5, 505-510.
  •  
  • 11. Goyal, R. K.; Katkade, S. S.; Mule, D. M. Dielectric, Mechanical and Thermal Properties of Polymer/BaTiO3 Composites for Embedded Capacitor. Compos. Part B: Eng. 2013, 44, 128-132.
  •  
  • 12. Wang, R.; Xie, C.; Luo, S.; Xu, H.; Gou, B.; Zhou, J.; Yang, H. Sandwich-Structured Polymer Composites with Core–Shell Structure BaTiO3@SiO2@PDA Significantly Enhanced Breakdown Strength and Energy Density for a High-Power Capacitor. ACS Appl. Energy Mater. 2021, 4, 6135-6145.
  •  
  • 13. Guo, R.; Luo, H.; Yan, M.; Zhou, X.; Zhou, K.; Zhang, D. Significantly Enhanced Breakdown Strength and Energy Density in Sandwich-Structured Nanocomposites with Low-Level BaTiO3 Nanowires. Nano. Energy. 2021, 79, 105412.
  •  
  • 14. Yan, G.; Ma, M.; Li, C.; Li, Z.; Zhong, X.; Yang, J.; Wu, F.; Chen, Z. Enhanced Energy Storage Property and Dielectric Breakdown Strength in Li+ Doped BaTiO3 Ceramics. J. Alloys Comp. 2021, 857, 158021.
  •  
  • 15. Lu, X.; Zou, X.; Shen, J.; Zhang, L.; Jin, L.; Cheng, Z.-Y. High Energy Density with Ultrahigh Discharging Efficiency Obtained in Ceramic-Polymer Nanocomposites Using a Non-Ferroelectric Polar Polymer as Matrix. Nano. Energy. 2020, 70, 104551.
  •  
  • 16. Jian, G.; Jiao, Y.; Meng, Q.; Wei, Z.; Zhang, J.; Yan, C.; Moon, K.-S.; Wong, C.-P. Enhanced Dielectric Constant and Energy Density in a BaTiO3/Polymer-Matrix Composite Sponge. Commun. Mater. 2020, 1, 91.
  •  
  • 17. Choi, S.-H.; Kim, I.-D.; Hong, J.-M.; Park, K.-H.; Oh, S.-G. Effect of the Dispersibility of BaTiO3 Nanoparticles in BaTiO3/Polyimide Composites on the Dielectric Properties. Mater. Lett. 2007, 61, 2478-2481.
  •  
  • 18. Zhang, D.; Wu, Z.; Zhou, X.; Wei, A.; Chen, C.; Luo, H. High Energy Density in P(VDF-HFP) Nanocomposite with Paraffin Engineered BaTiO3 Nanoparticles. Sens. Actuators A Phys. 2017, 260, 228-235.
  •  
  • 19. Calame, J. P. Simulation of Polarization, Energy Storage, and Hysteresis in Composite Dielectrics Containing Nonlinear Inclusions. J. Appl. Phys. 2011, 110, 054107.
  •  
  • 20. Chu, B.; Lin, M.; Neese, B.; Zhou, X.; Chen, Q.; Zhang, Q. M. Large Enhancement in Polarization Response and Energy Density of Poly(Vinylidene Fluoride-Trifluoroethylene-Chlorofluoroethylene) by Interface Effect in Nanocomposites. Appl. Phys. Lett. 2007, 91, 122909.
  •  
  • 21. Wang, G.; Huang, X.; Jiang, P. Bio-Inspired Fluoro-Polydopamine Meets Barium Titanate Nanowires: A Perfect Combination to Enhance Energy Storage Capability of Polymer Nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 7547-7555.
  •  
  • 22. Blanco López, M. C.; Rand, B.; Riley, F. L. The Isoelectric Point of BaTiO3. J. Europ. Ceramic Soc. 2000, 20, 107-118.
  •  
  • 23. Chiang, C.-W.; Jean, J.-H. Effects of Barium Dissolution on Dispersing Aqueous Barium Titanate Suspensions. Mater. Chem. Phys. 2003, 80, 647-655.
  •  
  • 24. Zhang, D.; Wu, Z.; Zhou, X.; Wei, A.; Chen, C.; Luo, H. High Energy Density in P(VDF-HFP) Nanocomposite with Paraffin Engineered BaTiO3 Nanoparticles. Sens. Actuators A Phys. 2017, 260, 228-235.
  •  
  • 25. Zhang, R.; Li, L.; Long, S.; Shen, Y.; Lou, H.; Wen, F.; Hong, H.; Wang, G.; Wu, W. Linear and Ferroelectric Effects of BaTiO3 Particle Size on the Energy Storage Performance of Composite Films with Different Polymer Matrices. Ceramics International 2021, 47, 22155-22163.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(6): 662-668

    Published online Nov 25, 2024

  • 10.7317/pk.2024.48.6.662
  • Received on Jun 10, 2024
  • Revised on Jul 25, 2024
  • Accepted on Jul 25, 2024

Correspondence to

  • Hyun Min Jung
  • *Department of Applied Chemistry, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Korea
    **Department of Energy Engineering Convergence, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Korea

  • E-mail: hmjung@kumoh.ac.kr