• Enhancing Properties of Reclaimed Rubber via Supercritical Fluid-Assisted Shear Desulfurization and Calcium Carbonate Modification
  • Yuan Jing, Huazhang Ma*, Meng Zhao*,† , Zetao Lin*, Weiquan Chen**, and Guangyi Lin*,†

  • College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China
    *Qingdao University of Science and Technology Guangrao Rubber Industry Research Institute, Dongying 257300, P. R. China
    **Dongying Vocational College of Science and Technology, Dongying 257335, P. R. China

  • 초임계 기반 전단 탈황 및 탄산칼슘 개질을 통한 재생 고무특성 향상 연구
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Ao, Z.; Pramanik, A.; Basak, A. K.; Prakash, C.; Shankar, S. Material recovery and recycling of waste tyres-A review. Cleaner Materials 2022, 5, 100115.
  •  
  • 2. Ma, Y.; Zhao, H.; Zhang, X.; Fan, C.; Zhuang, T.; Sun, C.; Zhao, S. Structure Optimization of Pyrolysis Carbon Black From Waste Tire and Its Application in Natural Rubber Composites. Appl. Surface Sci. 2022, 593, 153389.
  •  
  • 3. Lv, J.; Zhou, T.; Du, Q.; Wu, H. Effects of Rubber Particles on Mechanical Properties of Lightweight Aggregate Concrete. Constr. Build. Mater. 2015, 91, 145-149.
  •  
  • 4. Archibong, F. N.; Sanusi, O. M.; Médéric, P.; Hocine, N. A. An Overview on the Recycling of Waste Ground Tyre Rubbers in Thermoplastic Matrices: Effect of Added Fillers. Resour. Conserv. Recycl. 2021, 175, 105894.
  •  
  • 5. Sienkiewicz, M.; Janik, H.; Borzędowska-Labuda, K.; Kucińska-Lipka, J. Environmentally Friendly Polymer-rubber Composites Obtained from Waste Tyres: A Review. J. Clean. Prod. 2017, 147, 560-571.
  •  
  • 6. Chittella, H.; Yoon, L. W.; Ramarad, S.; Lai, Z. W. Rubber Waste Management: A Review on Methods, Mechanism, and Prospects. Polym. Degrad. Stab. 2021, 194, 109761.
  •  
  • 7. Ismail, H.; Nordin, R.; Noor, A. M. The Comparison Properties of Recycle Rubber Powder, Carbon Black, and Calcium Carbonate Filled Natural Rubber Compounds. Polym.-Plastics Technol. Eng. 2002, 41, 847-862.
  •  
  • 8. Phuhiangpa, N.; Phongphanphanee, S.; Smitthipong, W. February Study of Rubber/calcium Carbonate Composites. In IOP Conference Series. Mater. Sci. Eng. 2020, 773, 012013.
  •  
  • 9. Fang, Q.; Song, B.; Tee, T. T.; Sin, L. T.; Hui, D.; Bee, S. T. Investigation of Dynamic Characteristics of Nano-size Calcium Carbonate Added in Natural Rubber Vulcanizate. Compos. Part B: Eng. 2014, 60, 561-567.
  •  
  • 10. Jong, L. Synergistic Effect of Calcium Carbonate and Biobased Particles for Rubber Reinforcement and Comparison to Silica Reinforced Rubber. J. Compos. Sci. 2020, 4, 113.
  •  
  • 11. Combes, C.; Miao, B.; Bareille, R.; Rey, C. Preparation, Physical–chemical Characterisation and Cytocompatibility of Calcium Carbonate Cements. Biomaterials 2006, 27, 1945-1954.
  •  
  • 12. Arbatan, T.; Fang, X.; Shen, W. Superhydrophobic and Oleophilic Calcium Carbonate Powder as a Selective Oil Sorbent With Potential Use in Oil Spill Clean-ups. Chem. Eng. J. 2011, 166, 787-791.
  •  
  • 13. Ippolito, F.; Hübner, G.; Claypole, T.; Gane, P. Influence of the Surface Modification of Calcium Carbonate on Polyamide 12 Composites. Polymers 2020, 12, 1295.
  •  
  • 14. Shui, M. Polymer Surface Modification and Characterization of Particulate Calcium Carbonate Fillers. Appl. Surface Sci. 2003, 220, 359-366.
  •  
  • 15. Chen, M.; Geng, J.; Gao, Z.; Wang, W.; He, L.; Niu, Y. Effect of Modified Heavy Calcium Carbonate on Properties of Crumb Rubber Modified Asphalt Binder. Int. J. Pavement Eng. 2023, 24, 2144308.
  •  
  • 16. Yu, Y.; Zhang, J.; Wang, H.; Xin, Z. Silanized Silica-encapsulated Calcium Carbonate@natural Rubber Composites Prepared by One-pot Reaction. Polymers 2020, 12, 2668.
  •  
  • 17. Chen, Z.; Tu, Q.; Shen, X.; Fang, Z.; Bi, S.; Yin, Q.; Zhang, X. Enhancing the Thermal and Mechanical Properties of Carbon Fiber/natural Rubber Composites by co-modification of Dopamine and Silane Coupling Agents. Polym. Test. 2023, 108164.
  •  
  • 18. Sun, B.; Du, Z.; Cao, H.; Du, L.; Yu, W. Oxidation-grafting Surface Modification of Waste Silicone Rubber Composite Insulator Powder: Characterizations and properties of EPDM/modified Waste Powder Composites. J. Appl. Polym. Sci. 2017, 34, 45438.
  •  
  • 19. Liao, J.; Du, G.; Xue, Q.; Ding, H. Surface Modification of Diatomite by Steatic Acid and it’s Effects on Reinforcing for Natural Rubber/styrene Butadiene Rubber Blend. J. Chinese Ceramic Society 2011, 39, 641-645.
  •  
  • 20. Ramadhan, A.; Fathurrohman, M. I.; Falaah, A. F.; Setyawan, N.; Soegijono, B. Effect of Expanded Organoclay by Stearic Acid to Curing, Mechanical and Swelling Properties of Natural Rubber Nanocomposites. In IOP Conference Series: Mater. Sci. Eng. 2017, 223, 012030.
  •  
  • 21. da Silva Barbosa Ferreira, E.; Luna, C. B. B.; Araújo, E. M.; Siqueira, D. D.; Wellen, R. M. R. Polypropylene/wood Powder/ethylene Propylene Diene Monomer Rubber-maleic Anhydride Composites: Effect of PP Melt Flow Index on the Thermal, Mechanical, Thermomechanical, Water Absorption, and Morphological Parameters. Polym. Compos. 2021, 42, 484-497.
  •  
  • 22. Shenoy, A. V.; Chattopadhyay, S.; Nadkarni, V. M. From Melt Flow Index to Rheogram. Rheologica Acta 1983, 22, 90-101.
  •  
  • 23. Joseph, A. M.; George, B.; Kn, M.; Alex, R. Effect of Devulcanization on Crosslink Density and Crosslink Distribution of Carbon Black Filled Natural Rubber Vulcanizates. Rubber Chem. Technol. 2016, 89, 653-670.
  •  
  • 24. Zhang, G.; Zhou, X.; Liang, K.; Guo, B.; Li, X.; Wang, Z.; Zhang, L. Mechanically Robust and Recyclable EPDM Rubber Composites by a Green Cross-linking Strategy. ACS Sustainable Chem. Eng. 2019, 7, 11712-11720.
  •  
  • 25. Williams, I. Vulcanization of Rubber with Sulfur. Ind. Eng. Chem. 1947, 39, 901-906.
  •  
  • 26. Westlake, H. E. The Sulfurization of Unsaturated Compounds. Chem. Rev. 1946, 39, 219-239.
  •  
  • 27. Moniruzzaman, M.; Sundararajan, P. R. Morphology of Blends of Self-assembling Long-chain Carbamate and Stearic Acid. Pure Appl. Chem. 2004, 76, 1353-1363.
  •  
  • 28. Kaneko, F.; Kobayashi, M.; Sakashita, H. Polytypic Structure and Low-frequency Raman Spectra of Long-chain Compounds: Stearic Acid E Form. J. Raman Spectrosc. 1993, 24, 527-532.
  •  
  • 29. Arbatan, T.; Fang, X.; Shen, W. Superhydrophobic and Oleophilic Calcium Carbonate Powder as a Selective Oil Sorbent with Potential Use in Oil Spill Clean-ups. Chem. Eng. J. 2011, 166, 787-791.
  •  
  • 30. Cao, Z.; Daly, M.; Clémence, L.; Geever, L. M.; Major, I.; Higginbotham, C. L.; Devine, D. M. Chemical Surface Modification of Calcium Carbonate Particles with Stearic Acid Using Different Treating Methods. Appl. Surface Sci. 2016, 378, 320-329.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(1): 17-26

    Published online Jan 25, 2025

  • 10.7317/pk.2025.49.1.17
  • Received on Jun 7, 2024
  • Revised on Aug 24, 2024
  • Accepted on Sep 23, 2024

Correspondence to

  • Meng Zhao and Guangyi Lin
  • *Qingdao University of Science and Technology Guangrao Rubber Industry Research Institute, Dongying 257300, P. R. China

  • E-mail: sdzhaomeng@163.com, gylin666@163.com