• Enhancing Bio PC/CNF Nanocomposite Performance Through Bio PC-g-MA Compatibilizer
  • Gyeong Eun Kim*,#, Do Hyun Kwon**,#, Jaehyun Lee, and Jung Sul Jung

  • Advanced Chemical Material R&D Center, Korea Testing & Research Institute, 89 Sepungsandan1-ro, Gwangyang-eup, Gwangyang 57765, Korea
    *School of Chemical Engineering, Pusan National University, Busan 46241, Korea
    **School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea

  • Bio PC-g-MA 상용화제 적용을 통한 Bio PC/CNF 나노복합체의 성능 향상
  • 김경은*,# · 권도현**,# · 이재현 · 정정설

  • 한국화학융합시험연구원 첨단화학소재센터, *부산대학교 응용화학공학부, **전남대학교 화학공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Hoekstra, E.; Simoneau, C. Release of Bisphenol A from Polycarbonate—A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 386-402.
  •  
  • 2. Dutta, M.; Paul, G. Bisphenol a Dose- and Time-dependently Induces Oxidative Stress in Rat Liver Mitochondria Ex Vivo. Asian J. Pharmaceutical and Clinical Research, 2018, 11, 98-105.
  •  
  • 3. Wang, H.; Xu, F.; Zhang, Z.; Feng, M.; Jiang, M.; Zhang, S. Bio-based Poly Carbonates: Progress and Prospects. RSC Sustain. 2023, 1, 2162-2179.
  •  
  • 4. Gómez de Miranda, O.; Centeno-Pedrazo, A.; Fernández, S.; Rodriguez, R.; Medel, S.; Cuevas, J.; Monsegue, L.; Wildeman, S.; Benedetti, E.; Klein, D.; Henneken, H.; Ochoa-Gómez, J. The Future of Isosorbide as a Fundamental Constituent for Polycarbonates and Polyurethanes. Green Chem. Lett. Reviews, 2021, 14, 533-543.
  •  
  • 5. Park, S. A.; Eom, Y.; Jeon, H.; Koo, J. M.; Lee, E. S.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. Preparation of Synergistically Reinforced Transparent Bio-polycarbonate Nanocomposites with Highly Dispersed Cellulose Nanocrystals. Green Chem. 2019, 21, 5212-5221.
  •  
  • 6. Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and Application. Carbon Resour. Convers. 2018, 1, 32-43.
  •  
  • 7. Lee, M.; Heo, M. H.; Lee, H. H.; Kim, Y. W.; Shin, J. Tunable Softening and Toughening of Individualized Cellulose Nanofibers-polyurethane Urea Elastomer Composites. Carbohyd. Polym. 2017, 159, 125-135.
  •  
  • 8. Vu, C. M.; Nguyen, D. D.; Sinh, L.; Duc, P. Micro-fibril Cellulose as a Filler for Glass Fiber Reinforced Unsaturated Polyester Composites: Fabrication and Mechanical Characteristics. Macromol. Res. 2018, 26, 54-60.
  •  
  • 9. Yeo, J. S.; Kim, O. Y.; Lee, S. W.; Hwang, S. H. The Effect of Cellulose Surface Treatment on the Fracture Toughness of Micro fibrillated Cellulose Reinforced Unsaturated Polyester Composites. Polym. Korea 2017, 41, 157-162.
  •  
  • 10. Xu, W.; Qin, Z.; Yu, H. Yannan, L., Liu, N., Zhou, Z., Chen, L. Cellulose Nanocrystals as Organic Nanofillers for Transparent Polycarbonate Films. J. Nanopart Res. 2013, 15, 1562.
  •  
  • 11. Xia, W.; Qin, X.; Zhang, Y.; Sinko, R.; Keten, S. Achieving Enhanced Interfacial Adhesion and Dispersion in Cellulose Nanocomposites via Amorphous Interfaces. Macromolecules, 2018, 51, 10304-10311.
  •  
  • 12. Joseph, K.; Thomas, S.; Pavithran, C. Effect of Chemical Treatment on the Tensile Properties of Short Sisal Fibre-reinforced Polyethylene Composites. Polymer 1996, 37, 5139-5149.
  •  
  • 13. Pracella, M.; Haque, M. M.-U. Alvarez, V. Compatibilization and Properties of EVA Copolymers Containing Surface-Functionalized Cellulose Microfibers. Macromol. Mater. Eng. 2010, 295, 949-957.
  •  
  • 14. Yano, H.; Omura, H.; Honma, Y.; Okumura, H.; Sano, H.; Nakatsubo, F. Designing Cellulose Nanofiber Surface for High Density Polyethylene Reinforcement. Cellulose, 2018, 25, 3351-3362.
  •  
  • 15. Zhang L, Lv S, Sun C, Wan L, Tan H, Zhang Y. Effect of MAH-g-PLA on the Properties of Wood Fiber/Polylactic Acid Composites. Polymers 2017, 9, 591.
  •  
  • 16. Yoon, H. J.; Gil, B. M.; Lee, H.; Park, J. E.; Lim J. H.; Jo, M. J.; Jung K. H.; Wie J. J.; Thermal and Mechanical Properties of Polypropylene/Cellulose Nanofiber Composites. Polym. Korea 2020, 44, 255-263.
  •  
  • 17. Kim, H. S.; Lee, B. H.; Choi, S. W.; Kim, S.; Kim, H. J. The Effect of Types of Maleic Anhydride-grafted Polypropylene (MAPP) on the Interfacial Adhesion Properties of Bio-flour-filled Polypropylene Composites. Composites Part A. Appl. Sci. Manufacturing, 2007, 38, 1473-1482.
  •  
  • 18. Oliver-Ortega, H.; Reixach, R.; Espinach, F. X.; Méndez, J. A. Maleic Anhydride Polylactic Acid Coupling Agent Prepared from Solvent Reaction: Synthesis, Characterization and Composite Performance. Materials, 2022, 15, 1161.
  •  
  • 19. Hwang, S. W.; Lee, S. B.; Lee, C. K.; Lee, J. Y.; Shim, J. K.; Selke, S. E. M.; Soto-Valdez, H.; Matuana, L.; Rubino, M.; Auras, R. Grafting of Maleic Anhydride on Poly(L-lactic acid). Effects on Physical and Mechanical Properties. Polym. Test. 2012,31, 333-344.
  •  
  • 20. Hassouna, F.; Raquez, J.-M.; Addiego, F.; Toniazzo, V.; Dubois, P.; Ruch, D. New Development on Plasticized Poly(lactide): Chemical Grafting of Citrate on PLA by Reactive Extrusion. Europ. Polym. J. 2012, 48, 404-415.
  •  
  • 21. Kang, D. J.; Lee, S. H.; Kim, J. K.; Park, C. Y.; Zhen Xiu Zhang, Bang, D. S.; Kaushik Pal. Preparation and Characterization of Grafted Maleic Anhydride onto Polypropylene by Reactive Extrusion. Polym. Korea 2009, 33, 358-363.
  •  
  • 22. Lianchao, Z.; Gongben, T.; Qiang, S.; Chuanlun, C.; Jinghua, Y. Neodymium Oxide co-catalyzed Melt Free Radical Grafting of Maleic Anhydride Onto co-polypropylene by Reactive Extrusion. Reactive and Functional Polym. 2006, 66, 984-992.
  •  
  • 23. Yu, S. W.; Choi, J. So.; Na, J. S. A Study on Synthesis and Hydrolysis of the Maleated Polyethylene Wax. Clean Technology, 2013, 19, 393-400.
  •  
  • 24. Zhou, Y.; Hu, J.; Dang, B.; Jinliang, H. Mechanism of Highly Improved Electrical Properties in Polypropylene by Chemical Modification of Grafting Maleic Anhydride. J. Phys. D: Appl. Phys. 2016, 49, 415301.
  •  
  • 25. Hermawan, B.; Nikmatin, S.; Sudaryanto, Alatas, H.; Sukaryo, S. G. Effect of Oil Palm Empty Fruit Bunches Fibers Reinforced Polymer Recycled. IOP Conference Series: Mater. Sci. Eng. 2017, 223, 12064.
  •  
  • 26. Lyatskaya, Y.; Gersappe, D.; Gross, N. A.; Balazs, A. C. Designing Compatibilizers To Reduce Interfacial Tension in Polymer Blends. J. Phys. Chem. 1996, 100, 1449-1458.
  •  
  • 27. Finkle, A. C. Cellulose-Polycarbonate Nano composites: A novel automotive window. Master’s Thesis, University of Waterloo, Canada, 2011.
  •  
  • 28. Vidakis, N.; Petousis, M.; Velidakis, E.; Spiridaki, M.; Kechagias, J. D. Mechanical Performance of Fused Filament Fabricated and 3D-Printed Polycarbonate Polymer and Polycarbonate/Cellulose Nanofiber Nano composites. Fibers. 2021, 9, 74.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(1): 44-51

    Published online Jan 25, 2025

  • 10.7317/pk.2025.49.1.44
  • Received on Jun 28, 2024
  • Revised on Oct 18, 2024
  • Accepted on Oct 18, 2024

Correspondence to

  • Jung Sul Jung
  • Advanced Chemical Material R&D Center, Korea Testing & Research Institute, 89 Sepungsandan1-ro, Gwangyang-eup, Gwangyang 57765, Korea

  • E-mail: jsyk38317@ktr.or.kr