• Impact of Carbon Fiber Reinforcement on the Performance of IPN-Based Elliptical Leaf Springs
  • R. Vezhavendhan, G. Suresh*,† , Meenakshi Chinnathambi Muthukaruppan**, P. Chandramohan***, Dinesh Kumar Madheswaran****, and R. Ganesamoorthy*****

  • School of Mechanical Engineering, Department of Manufacturing Engineering, VIT, Vellore, 632014, India.
    *Department of Mechanical Engineering, Rajalakshmi Institute of Technology, Chennai, 600124, India.
    **Senior Analyst, HCL America INC, USA.
    ***Department of Mechatronics Engineering, Rajalakshmi Engineering College, Chennai, 602105, India.
    ****Department of Automobile Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
    *****Center for Material Research, Chennai Institute of Technology, Chennai, 600069, India.

  • 탄소 섬유 보강이 IPN 기반 타원형 리프스프링 성능에 미치는 영향
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Arshad, Z.; Nasir, M. A.; Baig, Y.; Zeeshanm, M.; Malik, R. A.; Shaker, K.; Hussain, A.; Latif, M.; Sattarm, M.; Alrobei, H. Drop Weight Impact and Tension-Tension Loading Fatigue Behaviour of Jute/Carbon Fibers Reinforced Epoxy-based Hybrid Composites. Polym. Korea 2020, 44, 610-617.
  •  
  • 2. Ok, Y. S.; Choi , C. H.; Kim, Y. J.; Kim, B. K. A ramid Fiber Filled Maleic Anhydride-g-Polyethylene. Polym. Korea 1992, 16, 185-190.
  •  
  • 3. Joo, H.; Son, J. The Impact Fracture Behaviors of Low Density 2-D Carbon/Carbon Composites by Drop Weight Impact Test. Polym. Korea 2002, 26, 270-278.
  •  
  • 4. Park, Y.; Kang, H. J. The Physical Properties of Maleic Anhydride Polypropylene Film with Nano Cellulose Fiber. Polym. Korea 2020, 44, 201-207.
  •  
  • 5. Choi, C. H.; Ok, Y. S.; Kim, B. K.; Cho, W. J. Short Aramid Fiber Reinforced Polyethylene Ionomer. Polym. Korea 1992, 16, 736-738.
  •  
  • 6. Fan, Y.; Zhang, H.; Wu, G.; Zhang, H. Dynamic Rheological Behavior Processability and Mechanical Properties of PVC/Butyl Acrylate-grafted-Methyl Methacrylate/Styrene Blends. Polym. Korea 2015, 39, 852-859.
  •  
  • 7. Kim, E.-Y.; Kim, H.-D. Graft Copolymerization of Acrolein onto Kevlar-49 Fiber Surface. Polym. Korea 1995, 19, 769-778.
  •  
  • 8. Dharan, Jesse A. Bauman, Composite disc springs. Composites Part A: Appl. Sci. Manuf. 2007, 38, 2511-2516.
  •  
  • 9. Mc Geehin P., Composites in transportation: design and current developments. Mater. Des. 1982, 3, 378-387.
  •  
  • 10. Vikas Khatkar, Behera, B. K. Experimental Investigation of Composite Leaf Spring Reinforced with Various Fiber Architecture, Adv. Compos. Mater. 2020, 29, 129-145.
  •  
  • 11. Singh, H.; Brar, G. S. Characterization and Investigation of Mechanical Properties of Composite Materials Used for Leaf Spring. Mater. Today Proc., 2018, 5, 5857-5863.
  •  
  • 12. Liu, Z.; Lu, J.; Zhu, P. Lightweight Design of Automotive Composite Bumper System Using Modified Particle Swarm Optimizer. Compos. Struct. 2016, 140, 630-643.
  •  
  • 13. Talib, A. R. A.; Ali, A.; Goudah, G. Developing a Composite Based Elliptic Spring for Automotive Applications. Mater. Des. 2010, 31, 475-484.
  •  
  • 14. Mallick, P. K. Static Mechanical Performance of Composite Elliptic Springs. ASME J. Eng. Mater. Technol. 1987, 109, 22-26.
  •  
  • 15. Rajendran, I.; Vijayarangan, S. Optimal Design of a Composite Leaf Spring Using Genetic Algorithms. Comput. Struct. 2001, 79, 1121-1129.
  •  
  • 16. So, C. K.; Tse, P. C.; Lai, T. C.; Young, K. M. Static Mechanical Behavior of Composite Cylindrical Springs. Compos. Sci. Technol. 1991, 40, 251-63.
  •  
  • 17. Del Llano-Vizcaya, L.; Rubio-Gonzalez, C.; Mesmacque, G.; Banderas-Hernández, A. Stress Relief Effect on Fatigue and Relaxation of Compression Springs. Mater. Des. 2007, 28, 1130-1134.
  •  
  • 18. Subramanian, C.; Senthilvelan, S. Effect of Reinforced Fiber Length on the Joint Performance of Thermoplastic Leaf Spring. Mater. Des. 2010, 31, 3733-3741.
  •  
  • 19. Vimalanathan, P.; Suresh, G.; Rajesh, M. A Study on Mechanical and Morphological Analysis of Banana/Sisal Fiber Reinforced IPN Composites. Fibers Polym. 2021,22, 2261-2268.
  •  
  • 20. Rajamahendran, S.; Suresh, G. An Analysis on Mechanical and Sliding Wear Behaviour of E-Glass Fiber Reinforced IPN Composites. Mater. Today Proc., 2021,45, 1388-1392.
  •  
  • 21. Suresh, G.; Jayakumari, L. S. Analysing the Mechanical Behaviour of E-glass Fibre Reinforced Interpenetrating Polymer Network Composite Pipe. J. Compos. Mater. 2016, 50, 3053-3061.
  •  
  • 22. Suresh Gopi., Influence of Water Absorption on Glass Fibre Reinforced IPN Composite Pipes. Polimeros 2019, 29, 1-8.
  •  
  • 23. Gupta, N. K.; Easwara Prasad, G. L. Quasi-static and Dynamic Axial Compression of Glass/polyester Composite Hemi-spherical Shells. Int. J. Impact. Eng. 1999, 22, 757-774.
  •  
  • 24. Mahdi, E.; Hamouda, A. M. S.; Sahari, B. B. Axial and Lateral Crushing of Filament Wound Laminated Composite Curved Compound System. Adv. Compos. Mater. 2002, 11, 171-192.
  •  
  • 25. Zhang Jin, Chaisombat Khunlavit, He Shuai, Wang Chun H. Hybrid Composite Laminates Reinforced with Glass/carbon Woven Fabrics for Lightweight Load Bearing Structures. Mater. Des. 2012,36, 75-80.
  •  
  • 26. Mahdi, E.; Hamouda, A. M. S. An Experimental Investigation in to Mechanical Behaviour and Nonhybrid Composite Semi-elliptical Springs. Mater. Des. 2013, 52, 504-513.
  •  
  • 27. Al-Qureshi, H. A. Automobile Leaf Springs from Composite Materials. J. Mater. Proc. Technol. 2001, 117, 58-61.
  •  
  • 28. Ke, J.; Wu, Z.-y.; Chen, X.-y.; Ying, Z.-p. A Review on Material Selection, Design Method and Performance Investigation of Composite Leaf Springs. Composite Structures 2019, 226, 111277.
  •  
  • 29. Del Llano-Vizcayaa, L.; Rubio-Gonzaleza, C.; Mesmacqueb, G.; Banderas-Hernándeza, A. Stress Relief Effect on Fatigue and Relaxation of Compression Springs. Mater. Des. 2007, 28, 1130-1134.
  •  
  • 30. Ganesh, R.; Chavhan, Lalit N. Wankhade, Experimental Analysis of E-glass Fiber/epoxy Composite-material Leaf Spring Used in Automotive. Mater. Today Proc. 2020, 26, 373-377.
  •  
  • 31. Naik, N. K.; Ramasimha, R.; Arya, H.; Prabhu, S. V.; ShamaRao, N. Impact Response and Damage Tolerance Characteristics of Glass–carbon/epoxy Hybrid Composite Plates. Compos. Part B 2001, 32, 565-574.
  •  
  • 32. Suresh, G. A Study of Sliding Wear Behaviour of Carbon Fiber Reinforced IPN Composites. Mater. Today Proc. 2021, 45, 1300-1304.
  •  
  • 33. Mithari, R.; Patil, A.; Aitavade, E. N. Analysis of Composite Leaf Spring by Using Analytical & FEA. Int. J. Eng. Sci. Technol. 2012, 4, 4809-4814.
  •  
  • 34. Loganathan, T. G.; Chandra Sekaran, K.; Krishna Murthy, R.; Devan, P. K. Influence of Selective Reinforcement in Dynamic Performance of Glass-epoxy Composites. Mater. Today Proc. 2017, 4, 3014-3022.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(1): 67-75

    Published online Jan 25, 2025

  • 10.7317/pk.2025.49.1.67
  • Received on Jul 5, 2024
  • Revised on Sep 9, 2024
  • Accepted on Oct 9, 2024

Correspondence to

  • G. Suresh
  • *Department of Mechanical Engineering, Rajalakshmi Institute of Technology, Chennai, 600124, India.

  • E-mail: saisuresh1979@gmail.com