• Investigation of Core Density in Single Polymeric Globules Using Molecular Dynamics Simulations
  • Joohyeong Park and Hyun Woo Cho

  • Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea

  • 분자 동역학 시뮬레이션을 이용한 단일 고분자 구체의 중심 밀도 연구
  • 박주형 · 조현우

  • 서울과학기술대학교 정밀화학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Nishio, I.; Sun, S. T.; Swislow, G.; Tanaka, T. First Observation of the Coil-Globule Transition in a Single Polymer Chain. Nature 1979, 281, 208-209.
  •  
  • 2. Swislow, G.; Sun, S. T.; Nisho, I.; Tanaka, T. Coil-to-Globule Phase Transition in a Single Polystyrene Chain in Cyclohexane. Phys. Rev. Lett. 1980, 44, 796-798.
  •  
  • 3. Kang, H.; Pincus, P. A.; Hyeon, C.; Thirumalai, D. Effects of Macromolecular Crowding on the Collapse of Biopolymers. Phys. Rev. Lett. 2015, 114, 068303.
  •  
  • 4. Petridis, L.; Schulz, R.; Smith, J. C. Simulation Analysis of the Temperature Dependence of Lignin Structure and Dynamics. J. Am. Chem. Soc. 2011, 133, 20277-20287.
  •  
  • 5. Thirumalai, D.; Samanta, H. S.; Maity, H.; Reddy, G. Universal Nature of Collapsibility in the Context of Protein Folding and Evolution. Trends Biochem. Sci. 2019, 44, 675-687.
  •  
  • 6. Sherman, E.; Haran, G. Coil-Globule Transition in the Denatured State of a Small Protein. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11539-11543.
  •  
  • 7. Ziv, G.; Thirumalai, D.; Haran, G. Collapse Transition in Proteins. Phys. Chem. Chem. Phys. 2009, 11, 83-93.
  •  
  • 8. Haran, G. How, When and Why Proteins Collapse: the Relation to Folding. Curr. Opin. Struct. Biol. 2012, 22, 14-20.
  •  
  • 9. Mecerreyes, D.; Lee, V.; Hawker, C. J.; Hedrick, J. L.; Wursch, A.; Volksen, W.; Magbi-tang, T.; Huang, E.; Miller, R. D. A Novel Approach to Functionalized Nanoparticles: Self-crosslinking of Macromolecules in Ultradilute Solution. Adv. Mater. 2001, 13, 204-208.
  •  
  • 10. Mukherji, D.; Marques, C. M.; Kremer, K. Smart Responsive Polymers: Fundamentals and Design Principles. Ann. Rev. Cond. Mat. Phys. 2020, 11, 271-299.
  •  
  • 11. Nitti, A.; Carfora, R.; Assanelli, G.; Notari, M.; Pasini, D. Single-Chain Polymer Nanoparticles for Addressing Morphologies and Functions at the Nanoscale: A Review. ACS Appl. Nano Mater. 2022, 5, 13985-13997.
  •  
  • 12. Lifshitz, I. M.; Grosberg, A. Y.; Khokhlov, A. R. Some Problems of the Statistical Physics of Polymer Chains with Volume Interaction. Rev. Mod. Phys. 1978, 50, 683-713.
  •  
  • 13. Grosberg, A. Y.; Kuznetsov, D. V. Quantitative Theory of the Globule-to-Coil Transition. 1. Link Density Distribution in a Globule and Its Radius of Gyration. Macromolecules 1992, 25, 1970-1979.
  •  
  • 14. Grosberg, A. Y.; Kuznetsov, D. V. Quantitative Theory of the Globule-to-Coil Transition. 2. Density-Density Correlation in a Globule and the Hydrodynamic Radius of a Macromolecule. Macromolecules 1992, 25, 1980-1990.
  •  
  • 15. Grosberg, A. Y.; Kuznetsov, D. V. Quantitative Theory of the Globule-to-Coil Transition. 3. Globule-Globule Interaction and Polymer Solution Binodal and Spinodal Curves in the Globular Range. Macromolecules 1992, 25, 1991-1995.
  •  
  • 16. Grosberg, A. Y.; Kuznetsov, D. V. Quantitative Theory of the Globule-to-Coil Transition. 4. Comparison of Theoretical Results with Experimental Data. Macromolecules 1992, 25, 1996-2003.
  •  
  • 17. Wang, Z. G. 50th Anniversary Perspective: Polymer Conformation—A Pedagogical Review. Macromolecules 2017, 50, 9073-9114.
  •  
  • 18. Klushin, L. I.; Skvortsov, A. M. Unconventional Phase Transitions in a Constrained Single Polymer Chain. J. Phys. A: Math. Theor. 2011, 44, 473001.
  •  
  • 19. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, New York, USA, 1952.
  •  
  • 20. Rubinstein, M.; Colby, R. H. Polymer Physics, online edn ed.; Oxford University Press: Oxford, 2003.
  •  
  • 21. Rissanou, A. N.; Anastasiadis, S. H.; Bitsanis, I. A. Monte Carlo Study of the Coil-to-Globule Transition of a Model Polymeric System. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3651-3666.
  •  
  • 22. Seaton, D. T.; Wüst, T.; Landau, D. P. Collapse Transitions in a Flexible Homopolymer Chain: Application of the Wang-Landau Algorithm. Phys. Rev. E 2010, 81, 011802.
  •  
  • 23. Parsons, D. F.; Williams, D. R. M. An off-Lattice Wang-Landau Study of the Coil-Globule and Melting Transitions of a Flexible Homopolymer. J. Chem. Phys. 2006, 124, 221103.
  •  
  • 24. Rampf, F.; Binder, K.; Paul, W. The Phase Diagram of a Single Polymer Chain: New Insights from a New Simulation Method. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 2542-2555.
  •  
  • 25. Binder, K. Monte Carlo and Molecular Dynamics Simulations in Polymer Science; Oxford University Press: New York, USA, 1995.
  •  
  • 26. Cho, H. W.; Shi, G.; Kirkpatrick, T. R.; Thirumalai, D. Random First Order Transition Theory for Glassy Dynamics in a Single Condensed Polymer. Phys. Rev. Lett. 2021, 126, 137801.
  •  
  • 27. Yamamoto, R.; Kob, W. Replica-Exchange Molecular Dynamics Simulation for Supercooled Liquids. Phys. Rev. E 2000, 61, 5473-5476.
  •  
  • 28. Frenkel, D.; Smit, B. Understanding Molecular Simulation: FromAlgorithms to Applications; Academic Press: London, UK, 2001.
  •  
  • 29. de Gennes, P.G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, 1979.
  •  
  • 30. Zhang, P.; Alsaifi, N. M.; Wang, Z. G. Revisiting the Θ Point. Macromolecules 2020, 53, 10409-10420.
  •  
  • 31. Baysal, B. M.; Karasz, F. E. Coil-Globule Collapse in Flexible Macromolecules. Macromol. Theory Simul. 2003, 12, 627-646.
  •  
  • 32. Wu, C.; Wang, X. Globule-to-Coil Transition of a Single Homopolymer Chain in Solution. Phys. Rev. Lett. 1998, 80, 4092-4094.
  •  
  • 33. Zhou, K.; Lu, Y.; Li, J.; Shen, L.; Zhang, G.; Xie, Z.; Wu, C. The Coil-to-Globule- to-Coil Transition of Linear Polymer Chains in Dilute Aqueous Solutions: Effect of Intrachain Hydrogen Bonding. Macromolecules 2008, 41, 8927-8931.
  •  
  • 34. McQuarrie D. A. Statistical Mechanics; University Science Books: Sausalito, 2000.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(1): 97-103

    Published online Jan 25, 2025

  • 10.7317/pk.2025.49.1.97
  • Received on Jul 29, 2024
  • Revised on Aug 23, 2024
  • Accepted on Sep 29, 2024

Correspondence to

  • Hyun Woo Cho
  • Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea

  • E-mail: chohw2000@seoultech.ac.kr