• Supercapacitor Combined Gas Sensor system from Carbon Quantum Dot/Polypyrrole/Graphene Oxide Functionalized Polyurethane Foam Matrixes
  • Samayanan Selvam and Jin-Heong Yim

  • Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, Korea

  • 탄소 양자점/폴리피롤/그래핀 산화물 기능화 폴리우레탄 폼 복합체의 슈퍼커패시터 결합 가스 센서 시스템
  • 사마야난 셀밤 · 임진형

  • 공주대학교 공과대학 신소재공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Zhang, J.; Gu, M.; Chen, X. Supercapacitors for Renewable Energy Applications: A Review. Micro Nano Eng. 2023, 21, 100229.
  •  
  • 2. Ma, T.; Yang, H. X.; Lu, L. Development of Hybrid Battery-supercapacitor Energy Storage for Remote Area Renewable Energy Systems. Appl. Energy 2015, 153, 56-62.
  •  
  • 3. Amir, M.; Deshmukh, G. R.; Khalid, M. H.; Said, Z.; Raza, A.; Muyeen, S. M.; Nizami, A.; Elavarasan, R. M.; Saidur, R.; Sopian, K. Energy Storage Technologies: An Integrated Survey of Developments, Global Economical/environmental Effects, Optimal Scheduling Model, And Sustainable Adaption Policies. J. Energy Storage 2023, 72, 108694.
  •  
  • 4. Sharma, S.; Kumar, R.; Kumar, K.; Thakur, N. Sustainable Applications of Biowaste-derived Carbon Dots in Eco-friendly Technological Advancements: A Review. Mater. Sci. Eng. B 2024, 305, 117414.
  •  
  • 5. Nazar, M.; Hasan, M.; Basuki, W.; Gani, B. A.; Nada, C. E. Microwave Synthesis of Carbon Quantum Dots from Arabica Coffee Ground for Fluorescence Detection of Fe3+, Pb2+, and Cr3+. ACS Omega 2024, 9, 20571-20581.
  •  
  • 6. Qi, C.; Wang, H.; Yang, A.; Wang, X.; Xu, J. Facile Fabrication of Highly Fluorescent N-Doped Carbon Quantum Dots Using an Ultrasonic-Assisted Hydrothermal Method: Optical Properties and Cell Imaging. ACS Omega 2021, 6, 32904-32916.
  •  
  • 7. Pontes, S. M. A.; Rodrigues, V. S. F. One-pot Solvothermal Synthesis of Full-color Carbon Quantum Dots for Application in Light Emitting Diodes. Nano-Struct. Nano-Objects 2022, 32, 100917.
  •  
  • 8. Güntner, A. T.; Righettoni, M.; Pratsinis, S. E. Selective Sensing of NH3 by Si-doped α-MoO3 for Breath Analysis. Sensor. Actuat. B-Chem. 2016, 223, 266-273.
  •  
  • 9. Hibbard, T.; Crowley, K. Point of Care Monitoring of Hemodialysis Patients with a Breath Ammonia Measurement Device Based on Printed Polyaniline Nanoparticle Sensors. Anal. Chem. 2013, 85, 12158-12165.
  •  
  • 10. Ji, X.; Banks, C. E.; Aldous, L. Electrochemical Ammonia Gas Sensing in Nonaqueous Systems: a Comparison of Propylene Carbonate with Room Temperature Ionic Liquids. Electroanalysis 2007, 19, 2194-220.
  •  
  • 11. Oudenhoven, J. F. M.; Knoben, W. Electrochemical Detection of Ammonia Using a Thin Ionic Liquid Film as the Electrolyte. Procedia Eng. 2015, 120, 983-986.
  •  
  • 12. Quy, N. V.; Minh, V. A. Gas Sensing Properties at Room Temperature of a Quartz Crystal Microbalance Coated with ZnO Nanorods. Sensor. Actuat. B-Chem. 2011, 153, 188-193.
  •  
  • 13. Kwak, D.; Lei, Y.; Maric, R. Ammonia Gas Sensors: A Comprehensive Review. Talanta 2019, 201, 713-730.
  •  
  • 14. Ahmad, H. A.; Rizky, A. Ultra-sensitive Ammonia Sensor Based on a Quartz Crystal Microbalance Using Nanofibers Overlaid with Carboxylic Group-functionalized MWCNTs. Analyst, 2024, 149, 5191-5205.
  •  
  • 15. Chokkareddy, R.; Niranjan, T.; Redhi, G. G. Chapter 13 - Ionic Liquid Based Electrochemical Sensors and Their Applications. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin; Asiris, A. M.; Karchi, S., Eds.; Elsevier: Amsterdam, Cambridge, 2020; pp 367-387.
  •  
  • 16. Hussain, S.; Maktedar, S. S. Structural, Functional and Mechanical Performance of Advanced Graphene-based Composite Hydrogels. Results Chem. 2023, 6, 101029.
  •  
  • 17. Jurgis, B.; Lina, M. Single-walled Carbon Nanotube Based Coating Modified with Reduced Graphene Oxide for the Design of Amperometric Biosensors. Mater. Sci. Eng. C 2019, 98, 515-523.
  •  
  • 18. Hussain, M. F.; Slaughter, G. PtNPs Decorated Chemically Derived Graphene and Carbon Nanotubes for Sensitive and Selective Glucose Biosensing. J. Electroanal. Chem. 2020, 861, 113990.
  •  
  • 19. Shao, C.; Zhao, Y.; Qu, L. Recent Advances in Highly Integrated Energy Conversion and Storage System. SusMat. 2022, 2, 142-160.
  •  
  • 20. Mousavi, M. S.; Hashemi, A. S.; Kalashgrni, M. Y. Recent Advances in Energy Storage with Graphene Oxide for SC Technology. Sustainable Energy Fuels 2023, 7, 5176-5197.
  •  
  • 21. Marzo, G.; Mastronadri. V. M. Sustainable Electronic Biomaterials for Body-compliant Devices: Challenges and Perspectives for Wearable Bio-mechanical Sensors and Body Energy Harvesters. Nano Energy 2024, 123, 109336.
  •  
  • 22. Wang, S.; Jiang. Y. An Integrated Flexible Self-powered Wearable Respiration Sensor. Nano Energy 2019, 63, 103829.
  •  
  • 23. Dai, J.; Li, L.; Shi, B.; Li, Z. Recent Progress of Self-powered Respiration Monitoring Systems. Biosens. Bioelectron. 2021, 194, 113609.
  •  
  • 24. Hong, H. S.; Ha, N. H. Enhanced Sensitivity of Self-powered NO2 Gas Sensor to Sub-ppb Level Using Triboelectric Effect Based on Surface-modified PDMS and 3D-graphene/CNT Network. Nano Energy 2021, 87, 106165.
  •  
  • 25. Kolmakov, A.; Klenov, D. O,; Lilach, Y. Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles. Nano Lett. 2005, 5, 667-673.
  •  
  • 26. Selvam, S.; Yim, J.-H. Multifunctional Supercapacitor Integrated Sensor from Oyster and Cicada Derived Bio-ternary Composite: Vanillin/caffeine Detections in Beverages. J. Energy Storage 2022, 45, 103791.
  •  
  • 27. Jo, Y. H.; Selvam, S.; Yim, J.-H. Assembly of Flexible 3D Printed SCs from Thermoplastic Polyurethane Embedded Polypyrrole-CuO/MnO2 Composites. Polym. Korea 2024, 48, 289-298.
  •  
  • 28. Han, L.; Guo, T. Preparation of Carbon Quantum Dot Fluorescent Probe from Waste Fruit Peel and Its Use for the Detection of Dopamine. RSC Adv. 2024, 14, 1813-1821.
  •  
  • 29. Park, J. S.; Yim, J.-H. Mechanically and Electrically Enhanced Polyurethane-poly(3,4-ethylenedioxythiophene) Conductive Foams with Aligned Pore Structures Promote MC3T3-E1 Cell Growth and Proliferation. ACS Appl. Polym. Mater. 2020, 1482-1490.
  •  
  • 30. Kim, Y. J.; Yim, J.-H. Flexible, Biocompatible, and Electroconductive Polyurethane Foam Composites Coated with Graphene Oxide for Ammonia Detection. Sensor. Actuat. B-Chen. 2021, 344, 130269.
  •  
  • 31. De, B.; Karak, N. A Green and Facile Approach for the Synthesis of Water Soluble Fluorescent Carbon Dots From Banana Juice. RSC Adv. 2013,3, 8286-8290.
  •  
  • 32. Atchudan, R.; Edison, T. N. J. I. D. Facile Green Synthesis of Nitrogen-doped Carbon Dots Using Chionanthus Retusus Fruit Extract and Investigation of Their Suitability for Metal Ion Sensing and Biological Applications. Sensor. Actuator. B-Chen. 2017, 246, 497-509.
  •  
  • 33. Brachi, P. Synthesis of Carbon Dots (CDs) Through the Fluidized Bed Thermal Treatment of Residual Biomass Assisted by γ-alumina. Appl. Catal. B Environ. 2020,263, 118361.
  •  
  • 34. Kalaiyarasan, G.; Hemlatha, C.; Joseph, J. Fluorescence Turn-On, Specific Detection of Cystine in Human Blood Plasma and Urine Samples by Nitrogen-Doped Carbon Quantum Dots. ACS Omega 2019, 4, 1007-1014.
  •  
  • 35. Hatchett, D. W.; Kodippil, D. FTIR Analysis of Thermally Processed PU Foam. Polym. Degrad. Stab. 2005, 87, 555-561.
  •  
  • 36. Cho, H.-J.; Noh, Y.-J.; Jin, E-Y.; Yim J.-H. Study on the Hybrid Dual-functioning Application of Urethane Foam Modified with Graphene Oxide and Polypyrrole for an Electrode Scaffoldas Well as Chemical Sensor. Polym. Korea 2023, 47, 453-462.
  •  
  • 37. Bertolini, C. M.; Zamperlin, N.; Barra, G. M. O.; Pegoretti, A. Development of Poly(vinylidene fluoride)/thermoplastic Polyurethane/carbon Black-polypyrrole Composites with Enhanced Piezoelectric Properties. SPE Polymers 2023, 4, 143-155.
  •  
  • 38. Malik, R.; Lata, S.; Soni, Y.; Rani, P.; Malik, R. S. Carbon Quantum Dots Intercalated in Polypyrrole (PPy) Thin Electrodes for Accelerated Energy Storage. Electrochim. Acta 2024, 364, 137281.
  •  
  • 39. Selvam, S.; Park, Y-K.; Yim, J.-H. An Extremely Low Temperature Environment Operatable Hybrid Dual-functioning Energy Device Driven by a Supercapacitor/piezo–triboelectric Generator System. J. Mater. Chem. A 2023, 11, 16973-16984
  •  
  • 40. Fernandez, F. D. M.; Khadka, R.; Yim, J.-H. Highly Porous, Soft, and Flexible Vaporphase Polymerized Polypyrrole–styrene–ethylene–butylene–styrene Hybrid Scaffold as Ammonia and Strain Sensor. RSC Adv. 2020, 10, 22533-22541.
  •  
  • 41. Bhat, N. V.; Gadre, A. P. Bambole, V. A. Structural, Mechanical, and Electrical Properties of Electropolymerized Polypyrrole Composite Films. J. Appl. Polym. Sci. 2001, 80 2511-2517.
  •  
  • 42. Choi, K. S.; Liu, F. Fabrication of Free-standing Multilayered Graphene and Poly(3,4-ethylenedioxythiophene) Composite Films with Enhanced Conductive and Mechanical Properties. Langmuir 2010, 26, 12902-12908.
  •  
  • 43. Zhai, Y.; Yu, Y. Flexible and Wearable Carbon Black/thermoplastic Polyurethane Foam with a Pinnate-veined Aligned Porous Structure for Multifunctional Piezoresistive Sensors. Chem. Eng. J. 2020, 382, 122985.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(1): 148-157

    Published online Jan 25, 2025

  • 10.7317/pk.2025.49.1.148
  • Received on Oct 7, 2024
  • Revised on Dec 17, 2024
  • Accepted on Dec 17, 2024

Correspondence to

  • Jin-Heong Yim
  • Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, Korea

  • E-mail: jhyim@kongju.ac.kr