Article
  • Polymerization of Ethylene over Highly Active Catalysts Containing Mono- and Di-ester Lewis Base : Determination of Active Site Concentration
  • Kim I, Woo SI
  • 모노 및 디에스테르 루이스염기를 함유한 고활성 촉매에 의한 에틸렌 중합: 활성점 농도의 측정
  • 김일, 우성일
Abstract
The concentration of active sites (C*) for the polymerization of propylene has been compared with that for the polymerization of ethylene using highly active Mg(OEt)2/benzoyl chloride(PhCOCl)/TiCl4 catalysts (containing monoester) or MgCl2/butanol/phthaloyl chloride [Ph(COCl)2]/TiCl4 catalyst (containing diester) activated with AlEt3. The method used to measure a concentration of active sites is based on the inhibiting effect of carbon monoxide on polymerization. Depending on the strength of interaction between catalytic species and internal Lewis base anchored onto catalyst matrix, there was much difference between the C*-values for propylene polymerization and those for ethylene polymerization. While the C*-values for propylene polymerization measured at the maximum polymerization rate (Rp.m) were in the range between 0.17 and 0.33 mol/mol Ti, the C*-values for ethylene polymerization were in the range between 0.28 and 0.45 mol/mol Ti. In order to investigate the stability of active sites during polymerization the C* values have been compared at various polymerization times of determination. The C*-values were constant or increased for ethylene polymerizations, which was completely different trend for propylene polymerizations.

고활성을 나타내는 Mg(OEt)2/benzoyl chloride(PhCOCl)/TiCl4 (모노에스테르함유) 촉매 또는 MgCl2/butanol/phthaloyl chloride [Ph(COCl)2]/TiCl4 (디에스테르 함유) 촉매를 AlEt3로 활성화시켜 에틸렌중합에 대한 활성점농도 (C*)를 측정하여 프로필렌중합에서 얻은 활성점농도와 비교하였다. 활성점농도의 측정은 중합시에 일산화탄소를 흡착시키는 방법을 사용하였다. 촉매의 티탄종과 내부 루이스염기의 상호작용의 세기에 따라 에틸렌중합과 프로필렌중합에 대한 활성점농도는 큰 차이를 보였다. 즉, 프로필렌중합의 경우 최대중합속도(Rp.m)에서 측정한 활성점농도(C*)는 0.17∼0.33 mol/mol Ti이었으나, 에틸렌중합에 대한 활성점농도는 0.28∼0.45 mol/mol Ti이었다. 중합이 진행되는 동안의 활성점의 안정도를 조사하기 위하여 여러 가지 중합시간에서의 활성점농도를 아울러 비교하였다. 에틸렌중합에 대한 활성점농도는 중합시간에 따라 변함이 없거나 늘어났고, 이 결과는 프로필렌중합시의 활성점농도의 변화와는 완전히 다른 경향이었다.

References
  • 1. Karol FJ, Catal. Rev.-Sci. Eng., 26, 557 (1984)
  •  
  • 2. Barbe PC, Cecchin G, Noristi L, Adv. Polym. Sci., 81, 1 (1987)
  •  
  • 3. Busico V, Corradini PTransition Metal Catalyzed Polymerizations, R.P. Quirk, Ed., Cambridge Univ. Press, New York, p. 551 (1988)
  •  
  • 4. Soga K, Shiono T, Doi Y, Makromol. Chem., 189, 1531 (1988)
  •  
  • 5. Kim I, Woo SI, Polym. Bull., 23, 35 (1990)
  •  
  • 6. Kim I, Woo SI, J. Polym. Sci. A: Polym. Chem.submitted
  •  
  • 7. Kim I, Woo SI, Polym.(Korea)in press, 16(3)
  •  
  • 8. Kim IPh.D. Dissertation, KAIST, Seoul (1990)
  •  
  • 9. Jeong YT, Lee DH, Makromol. Chem., 191, 1487 (1990)
  •  
  • 10. Jeong YT, Lee DH, Soga K, Makromol. Chem. Rapid Commun., 12, 5 (1991)
  •  
  • 11. Pino P, Mullhaupt R, Angew. Chem.-Int. Edit., 19, 857 (1980)
  •  
  • 12. Soga K, Shiono T, Yamamoto K, Chem. Lett., 425 (1982)
  •  
  • 13. Hu Y, Chien JCW, J. Polym. Sci. A: Polym. Chem., 26, 2003 (1988)
  •  
  • 14. Kissin YV, Sivak AJ, J. Polym. Sci. A: Polym. Chem., 22, 3747 (1984)
  •  
  • 15. Busico V, Corradini P, Proto A, Savino V, Makromol. Chem., 186, 1279 (1985)
  •  
  • 16. Caunt AD, Br. Polym. J., 13, 22 (1981)
  •  
  • 17. Caunt AD, Catalysis (London), 1, 234 (1977)
  •  
  • 18. Mejzlik J, Lesna M, Kratochvila J, Adv. Polym. Sci., 81, 83 (1987)
  •  
  • 19. Caunt AD, Davies S, Tait PJTTransition Metal Catalyzed Polymerization, R.P. Quirk, Ed., Cambridge Univ. Press, New York, p. 105 (1988)
  •  
  • 20. Keii T, Suzuki E, Tamura M, Murata M, Doi Y, Makromol. Chem., 185, 2285 (1982)
  •  
  • 21. Schnecko H, Jung KA, Kern WCoordination Polymerization, J.C.W. Chien, Ed., Academic Press, New York, p. 73 (1975)
  •  
  • 22. chumaevskii NB, Makromol. Chem., 177, 747 (1976)
  •  
  • 23. Chien JCWTransition Metal Catalyzed Polymerization, R.P. Quirk, Ed., Cambridge Univ. Press, New York, p. 55 (1988)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1991; 15(6): 687-694

    Published online Dec 25, 1991