Article
  • Investigation of Dielectric Properties of Polyethylene-Clay Nanocomposites for Quantifying Nanofiller Dispersion
  • Saffettin Yıldırım, Kübra Pehlivan, Ali Durmuş*, and Kadir Esmer**,†

  • Physics Department, İstanbul University, 34134, Vezneciler, İstanbul, Turkey
    *Chemical Engineering Department, İstanbul University, 34320, Avcılar, İstanbul, Turkey
    **Physics Department, Marmara University, 34722, Göztepe, İstanbul, Turkey

  • 나노 충전제의 분산을 정량화하기 위한 폴리에틸렌-클레이 나노 복합체의 유전특성 연구
Abstract

This study examined the dielectric properties of linear low density polyethylene (LLDPE)/organo-clay nanocomposites including the same amount of maleic anhydride grafted polyethylene (PE-g-MA) and oxidized polyethylene (OxPE) as compatibilizer at different frequencies (10-1-10+7 Hz) and temperatures (237-373 K). The dielectric constant of natural LLDPE remained constant at around 1.5, depending on the temperature rise and frequency while that of LLDPE-PE-g-MA/clay and LLDPE-OxPE/clay nanocomposites increased up to 4.8 and 2.8, respectively, linearly with increasing temperature. Especially in the low frequency region, a Maxwell-Wagner-Sillars polarization was observed in composite structures with an increase in temperature due to the dipolar effect. It has been concluded that the clay in the polymer matrix was more homogeneously dispersed than OxPE due to the compatibilizing effect of PE-g-MA and that different polarization mechanisms were at play for each compatibilizer.


Keywords: low density polyethylene, composites, nanoparticles, polymers, dielectric properties

Introduction

Low amounts of clay in polymer-clay nanocomposite structures contribute to innovations and advances to develop some properties of polymer materials that are widely used in the industry. Very low amounts of clay or metal oxides doped into polymer matrix are instrumental in increasing the mechanical strength of polymer structures, retarding combustion properties, keeping polymer structures intact up to high temperatures, reducing gas permeability properties, inhibiting the absorption of inorganic liquids, increasing dielectric strengths and developing polymers with lower dielectric constant.1-19
The aim of this study is to examine in detail the dielectric properties of polymer-clay mixtures. Dielectric studies that investigate molecular drift in polypropylene-clay nanocomposites (Martin et al.),2 polarization mechanism of polymeric composite obtained by mixing polypropylene and synthetic clay and electrical conductivity (Antonio et al.),3 dielectric properties of thin film structures prepared according to clay concentration in poly-clay nanocomposites (Wong et al.),4,5 and the effect of dispersion of clay layers in polymer chains on dielectric properties and dielectric constant of polylactide-clay (Pluta et al.),6 and of polymer-clay composite constructions (Rick D. Davis et al.),7 are noteworthy.
On the other hand, the interface effect significantly changes the dielectric and mechanical properties of polymer-clay nanocomposite films,2-4,8-14 which is why different polymeric chemicals referred to as compatibilizers are used to ensure that clay (additive material) is coordinated to the polymeric structure and homogeneously dispersed throughout the structure. This study used two different types of compatibilizers and dielectric spectroscopy method to examine the effect of clay (cloisite southern clay) on dielectric properties and relaxation behavior in the low frequency region depending on the dispersion of the clay in the polyethylene structure.

References
  • 1. A. Okada, M. Kawasumi, Y. Kurauchi, and O. Kamigaito, Polym. Prepr., 28, 447 (1987).
  •  
  • 2. B. Martin, G. Harald, F. Andreas, B. W. Klaus, T. Gamal, S. Andreas, and S. Bernard, Macromolecules, 38, 2764 (2005).
  •  
  • 3. A. Motori, G. C. Montanari, A. Saccani, and F. Patuelli, J. Polym. Sci., Part B: Polym. Phys., 45, 705 (2007).
  •  
  • 4. H. W, Wang, K. C. Chang, J. M. Yeh, and S. J. Liou, J. Appl. Polym. Sci., 97, 2175 (2005).
  •  
  • 5. H. W. Wang, K. C. Chang, H. C. Chu, S. J. Liou, and J. M. Yeh, J. Appl. Polym. Sci., 92, 2402 (2004).
  •  
  • 6. M. Pluta, J. K. Jeszka, and G. Boiteux, Eur. Polym. J., 43, 2819 (2007).
  •  
  • 7. R. D. Davis, A. J. Bur, M. McBrearty, Y. H. Lee, J. W. Gilman, and P. R. Start, Polymer, 45, 6847 (2004).
  •  
  • 8. A. E. Berzosa, J. L. G. Ribelles, S. Kripotou, and P. Pissis, Macromolecules, 37, 6472 (2004).
  •  
  • 9. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, Macromolecules, 30, 6333 (1997).
  •  
  • 10. D. Buncianu, N. Tessier-Doyen, F. Courreges, J. Absi, P. Marchet, and M. Jadaneant, J. Mech. Sci. Tech., 31, 1151 (2017).
  •  
  • 11. H. Bensalah, K. Gueraoui, H. Essabir, D. Rodrigue, R. Bouhfid, and A. el kacem Qaiss, J. Comps. Mater., 51, 3563 (2017).
  •  
  • 12. E. H. Hill, C. Hanske, A. Johnson, L. Yate, H. Jelitto, G. A. Schneider, and L. M. Liz-Marzan, Langmuir, 33, 8774 (2017).
  •  
  • 13. X. Li, X. Shen, R. Xian, Y. Chen, and P. Yang, 2016 International Conference on Condition Monitoring and Diagnosis (CMD 2016), Xi’an, China, Sept. 25-28 (2016).
  •  
  • 14. J. J. Kong, Z. L. Li, Z. W. Cao, C. Y. Han, and L. Dong, Polym. Bull., 74, 5065 (2017).
  •  
  • 15. E. David, B. Zazoum, M. F. Frechette, and F. Rogti, In 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena Annual Report (CEIDP), Ann Arbor, MI, USA, Oct. 18-21 (2015).
  •  
  • 16. K. N. Amarjeet, S. Ramadhar, and C. Subhas, Bull. Mater. Sci., 23, 227 (2000).
  •  
  • 17. J. K. Nelson and Y. Hu, J. Phys. D: Appl. Phys., 38, 213 (2005).
  •  
  • 18. J. Obrzut, A. Anopchenko, K. Kano, and H. Wang, Mat. Res. Soc. Symp. Proc., 783, B3.5.1. (2004).
  •  
  • 19. M. Asano, N. Miura, S. Sudo, Y. Hayashi, N. Shinyashiki, and S. Yagiraha, International Symposium, (NDT-CE 2003) Non-Destructive Testing in Civil Engineering, Berlin, Germany, Sept. 16-19 (2003).
  •  
  • 20. A. Durmus, A. Kasgoz, and C. W. Macosko, Polymer, 48, 4492 (2007).
  •  
  • 21. A. Durmus, M. Woo, A. Kasgoz, C. W. Macosko, and M. Tsapatsis, Eur. Polym. J., 43, 3737 (2007).
  •  
  • 22. S. Madakbas, K. Esmer, E. Kayahan, and M. Yumak, Sci. Eng. Compos. Mater., 17, 3, 145 (2010).
  •  
  • 23. S. Madakbas, E. Cakmakcı, M. V. Kahraman, and K. Esmer, Chem. Papers, 67, 8, 1048 (2013).
  •  
  • 24. Q. F. Huang, S. F. Yoon-Rusli, Q. Zhang, and J. Ahn, Thin Solid Film, 409, 211 (2002).
  •  
  • 25. Y. Wang, S. W. Huang, and J. Y. Guo, E-Polymers, 8, no. 075, (2008).
  •  
  • 26. G. D. Liang and S. C. Tjong, Mat. Chem. Phys., 100, 132 (2006).
  •  
  • 27. S. Roy, P. Thakur, N. A. Hoque, B. Bagchi, and S. Das, RSC Adv., 6, 21881 (2016).
  •  
  • 28. H. Deligz, T. Yalcınyuva, S. Özgümüs, and S. Yildirim, J. Appl. Polym. Sci., 100, 810 (2006).
  •  
  • 29. H. Kavas, Z. Durmuş, A. Baykal, A. Aslan, A. Bozkurt, and M. S. Toprak, J. Non-Crys. Sol., 358, 484 (2010).
  •  
  • 30. H. Deligöz, S. Özgümüş, T. Yalçınyuva, S. Yıldırım, D. Değer, and K. Ulutaş, Polymer, 46, 3720 (2005).
  •  
  • 31. A. Thabet and Y. Mobarak, Adv. Electr. Electron. Eng., 14, 295 (2016).
  •  
  • 32. R. Gregorio, L. F. Malmonge, G. F. L. Ferreira, W. N. Santos, and L. H. C. Mattoso, J.Appl. Polym. Sci., 87, 752 (2003).
  •  
  • 33. S. C. Tjong, G. D. Liang, and S. P. Bao, J. Appl. Polym. Sci., 102, 1436 (2006).
  •  
  • 34. Z. Durmuş, H. Kavas, M. S. Toprak, A. Baykal, T. G. Altınçekiç, A. Aslan, A. Bozkurt, and S. Coşgun, J. Alloys Compd., 484, 371 (2009).
  •  
  • 35. T. Dam, S. S. Jena, and D. K. Pradhan, Phys. Chem. Chem. Phys., 18, 19955 (2016).
  •  
  • 36. Y. H. Zhang, Z. M. Dang, S. Y. Fu, J. H. Xin, J. G. Deng, J. Wu, S. Yang, L. F. Li, and Q. Yan, Chem. Phys. Lett., 401, 553 (2005).
  •  
  • 37. L. B. Ammar, S. Fakhfakh, O. Jbara, S. Rondot, and A. Hadjadj, Micron, 98, 39 (2017).
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2018; 42(5): 769-775

    Published online Sep 25, 2018

  • 10.7317/pk.2018.42.5.769
  • Received on Feb 16, 2018
  • Revised on Apr 17, 2018
  • Accepted on Apr 25, 2018

Correspondence to

  • Kadir Esmer
  • Physics Department, İstanbul University, 34134, Vezneciler, İstanbul, Turkey
    **Physics Department, Marmara University, 34722, Göztepe, İstanbul, Turkey

  • E-mail: kadir.esmer@marmara.edu.tr
  • ORCID:
    0000-0002-1336-9259