Article
  • Performance Improvement of Unsaturated Polyester/Alumina Composites for Organic Building Material : (I) Surface Treatment of Filler
  • Choe CR, Jang JS
  • 유기 건축 복합재용 불포화 폴리에스테르/알루미나 복합재료의 물성향상: (Ⅰ) 충전재의 표면처리에 따른 고찰
  • 최철림, 장정식
Abstract
In order to apply for organic building material, unsaturated polyester/alumina composites have been fabricated using orthophthalic unsaturated polyester matrix resin. Alumina, as a filler, was surface treated with variation of silane concentration and the modified alumina surface was analyzed by FT-IR-DRIFT method. Compared with untreated alumina/unsaturated polyester composite, surface treated alumina/unsaturated polyester composites have retained the increased mechanical properties and optimum silane Concentration, which shows the maximum mechanical properties of unsaturated polyester/alumina composite. exists irrespective of the type of silane coupling agent. In addition, the relationship between silane concentration and the mechanical properties of unsaturated polyester/alumina composites was also discussed.

유기건축 복합재료의 대표적인 수지인 orthophthalic게 불포화 폴리에스테르를 매트릭스 수지로 사용하여 불포화 폴리에스테르/알루미나 복합재료를 제조하였다. 충전재인 알루미나의 표면을 실란 카플링제의 농도 변화에 따라 처리하여 충전재/매트릭스 수지의 계면 개질화를 시도하였으며, FT-IR DRIFT 방법에 의해 알루미나 표면을 분석하였다. 실란 카플링제로 알루미나 표면을 처리시 미처리 알루미나의 경우에 비해 불포화 폴리에스테르/알루미나 복합재료의 기계적 물성이 증가하였으며, 실란 카플링제의 종류에 관계없이 기계적 물성의 최대치를 나타내는 최적 실란농도가 존재하였다. 또한 실란 카플링제의 농도와 복합재료의 기계적 물성에 대한 상관관계도 고찰하였다.

References
  • 1. Mutch W, Plast. World, 45, 31 (1987)
  •  
  • 2. Shirayama K, Mater. Struct., 19, 249 (1986)
  •  
  • 3. Powell DEncyclopedia of Polymer Science and Engineering, pp. 146-147, Vol. 4, 2nd, Ed., John Wiley and Sons, Inc., New York (1986)
  •  
  • 4. Feldman DPolymeric Building Materials, Elsevier Applied Science, London (1989)
  •  
  • 5. Dudgeon CDProceeding of 34th International SAMPE Symposium, 2333 (1989)
  •  
  • 6. Updegraff IHHandbook of Composites, G. Lubin Ed., Van Nostrand Reinhold, Inc., New York (1982)
  •  
  • 7. Thomas LLSPI Plastic Engineering Handbook, Van Nostrand Reinhold, Inc., New York (1990)
  •  
  • 8. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
  •  
  • 9. Ozawa T, J. Ther. Anal., 2, 301 (1970)
  •  
  • 10. Kissinger HE, Anal. Chem., 29, 1702 (1957)
  •  
  • 11. Doyle CD, Anal. Chem., 33, 77 (1961)
  •  
  • 12. Horowitz NH, Metzger G, Anal. Chem., 35, 1464 (1963)
  •  
  • 13. Prime RB, Polym. Eng. Sci., 13, 365 (1973)
  •  
  • 14. Peyser P, Bascom WD, Anal. Calorim., 3, 357 (1974)
  •  
  • 15. Fava RA, Polymer, 9, 137 (1968)
  •  
  • 16. Lee D, Han CD, J. Appl. Polym. Sci., 34, 1235 (1987)
  •  
  • 17. Muzumdar SV, Lee LJ, Polym. Eng. Sci., 31, 1547 (1991)
  •  
  • 18. Dharmarajan N, Vipulanandan C, J. Appl. Polym. Sci., 42, 601 (1991)
  •  
  • 19. Yang YS, Lee LJ, Polymer, 29, 1793 (1988)
  •  
  • 20. Han CD, Lee D, J. Appl. Polym. Sci., 33, 2859 (1987)
  •  
  • 21. Dudgeon CDProceedings of the 34th International SAMPE Symposium, pp. 2333-2345 (1989)
  •  
  • 22. Comstock LR, Smith PLU.S. Patent, 4,284,736 (1981)
  •  
  • 23. Smith PL, Comstock LRU.S. Patent, 3,549,586 (1970)
  •  
  • 24. Cucuras CNProceedings of the 43th Annual Conference, Composite Institute, The Society of the Plastics Industry, Inc., 13-B (1988)
  •  
  • 25. Dudgeon CDEngineered Materials Handbook, ASM Internation (1988)
  •  
  • 26. American Society for Testing and Materials (ASTM) D 790M (1987)
  •  
  • 27. Ishida HMolecular Characterization of Composite Interfaces, Plenum Press, pp. 25-50 (1985)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1993; 17(6): 703-709

    Published online Nov 25, 1993