Article
  • Synthesis and Properties of Poly (1,2-diethynylbenzene)by Transition Metal Catalysts
  • Kim DJ, Kim KL, Cho HN, Kim CY
  • 전이금속 촉매에 의한 Poly(1,2-diethynylbenzene)의 합성 및 특성 연구
  • 김동진, 김경림, 조현남, 김정엽
Abstract
The monomer, 1,2-diethynylbenzene. was prepared by the reaction of 1,2-bis (trimethylsilylethynyl) benzene with KF, and homopolymerization and copolymerization with diethyldipropargyl malonate were carried out by various metathesis catalyst systems such as WCl6- and MoCl5- based catalysts associated with organo-aluminum and tin compounds. It was generally observed that the MoCl5- based catalysts were more effective for both the homopolymerization and copolymerization, and polymer yields increased with increasing initial concentration of the monomer and mole ratios of the catalyst to the monomer. The resulting dark red homopolymer, poly(1,2-diethynylbenzene), is hardly soluble in common organic solvents such as chloroform and tetrahydrofuran, whereas the violet copolymers which have number average molecular weight of ca. 3×104 are soluble in those solvents. The structure of the copolymers was identified by NMR and IR spectroscopies. From the spectral and solubility data, it is proposed that the copolymer structure is a cyclized form with conjugation. Homopolymer and copolymer(1 :1) are thermally stable up to 230℃ and 320℃, respectively and conductivities of the I2-doped polymers at room temperature were found to be about 10-6S/cm.

단량체인 1,2-디에티닐벤젠은 1,2-비스(트리메틸실릴 에티닐)벤젠을 KF와 반응시켜 제조하였으며 이를 여러 메타세시스 촉매를 사용하여 단일중합 및 디에틸디프로파길 말로네이트와 공중합하였다. MoCl5 촉매계가 일반적으로 좋은 중합결과를 나타냈으며 중합 수율은 단량체의 초기 농도가 클수록, 또한 촉매와 단량체에 대한 몰비가 클수록 높게 나타났다. 얻어진 단일중합체들은 대부분 클로로포름이나 테트라하이드로푸란과같은 일반 유기용매에 불용성이었으나 공중합체인 경우 매우 잘 용해되었으며 3만정도의 수평균분자량을 보였다. 특히 이들 공중합체는 NMR과 IR 스펙트럼상에서 아세틸렌기의 특성 피크들이 없는 것으로 보아 고분자의 구조는 가교가 되지않고 고리화 중합이된 고된자임을 알 수 있었다. 한편, 단일 중합체는 230℃까지 그리고 1:1 공중합체인 경우는 320℃까지 열적 안정성을 보여 주었으며 이들 중합체들을 I2 토핑 시켰을 때 전도도 값은 약 10-6S/cm를 나타내었다.

References
  • 1. Chien JCWPolyacetylene, Academic Press, New York (1984)
  •  
  • 2. Skotheim TAHandbook of Conducting Polymers, Marcel Dekker, New York, Vol. 1 and 2 (1986)
  •  
  • 3. Simionescu CI, Percec V, Prog. Polym. Sci., 8, 133 (1982)
  •  
  • 4. Chauser MG, Rodionov YM, Misin VM, Cherkashin MI, Russ. Chem. Rev., 45, 695 (1976)
  •  
  • 5. Gibson HW, Porchan JMEncyclopedia Polymer Science and Engineering, 2nd. John Wiley & Sons, New York, Vol. 1, p. 87 (1984)
  •  
  • 6. Masuda T, Hasegawa K, Higashimura T, Macromolecules, 7, 728 (1974)
  •  
  • 7. Masuda T, Higashimura T, Adv. Polym. Sci., 81, 121 (1987)
  •  
  • 8. Katz TJ, Lee SJ, J. Am. Chem. Soc., 102, 422 (1980)
  •  
  • 9. Gibson HW, Bailey FC, Epstein AJ, Rommelmann H, Kaplan S, Harbour J, Yang XQ, Tanner DB, Pochan JM, J. Am. Chem. Soc., 105, 4417 (1983)
  •  
  • 10. Choi SK, Makromol. Chem. Symp., 33, 145 (1990)
  •  
  • 11. Park JW, Lee JH, Cho HN, Choi SK, Macromolecules, 26, 1191 (1993)
  •  
  • 12. Jin SH, Choi SJ, Ahn W, Cho HN, Choi SK, Macromolecules, 26, 1487 (1993)
  •  
  • 13. Kang KL, Kim SH, Choi KY, Cho HN, Choi SK, Macromolecules, 26, 4539 (1993)
  •  
  • 14. Eglinton G, Galbraith AR, J. Chem. Soc., 889 (1959)
  •  
  • 15. Ryoo MS, Lee WC, Choi SK, Macromolecules, 23, 1191 (1990)
  •  
  • 16. Takahashi S, Kuroyama Y, Sonogashira K, Hagihara N, Synthesis, 627 (1980)
  •  
  • 17. Huynh C, Linstrumelle G, Tetrahedron, 44, 6337 (1988)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1994; 18(3): 297-302

    Published online May 25, 1994