Article
  • A Study on the Low-Temperature Cure Characteristics of Acid Anhydride-Based Epoxy Resin System for High-Temperature Cure
  • Gal YS, Park BY, Kim HG, Chung SK, Jung B
  • 고온경화용 산무수물계 에폭시 수지조성의 저온경화특성 연구
  • 갈영순, 박병열, 김형근, 정상기, 정발
Abstract
This paper deals with the study on the effects of lowering the curing temperature and also with the time of high temperature-curing anhydride-based DGEBA epoxy resin system for filament winding. Five curing conditions having different curing temperatures and times were selected and tested, where the final curing temperature was in the range of 120∼160℃. As the curing temperature and time increased, the mechanical and thermal properties somewhat increased. Besides the relatively low temperature curing condition( final curing temperature : 120℃ ), the other curing conditions( final curing temperature ≥ 140℃ ) were found to be adequate for the curing cycle of the present anhydride-based epoxy resin system for filament winding. The examination of fracture surfaces revealed that the more complicated fracture surface formed as the curing temperature and time increased.

본 논문은 필타멘트 와인딩 공법에서 고온경화용으로 사용되는 DGEBA-산무수물계 에폭시 수지조성의 경화온도를 낮추고 시간을 줄일 경우 그 영향을 여러가지 물성 관점에서 비교, 검토한 것이다. 최종 경화 온도가 120∼160'℃ 범위인 5종의 경화조건을 설정하여 실험하였다. 경화 온도와 시간이 증가할수록 기계적 및 열적특성은 약간 증가하는 경향을 보여주었다. 비교적 낮은 온도에서의 경화 조건(최종경화온도 : 120℃)을 제외한 나머지 경화 조건(최종경화온도≥140℃)은 필라멘트 와인딩용으로 사용되고 있는 현재의 산무수물계 에폭시 수지 조성의 경화 조건으로 적합한 것으로 판명되었다. 에폭시 수지 시편의 파단면을 관찰한 결과 경화 온도와 시간이 증가할 수록 더 복잡한 파단면이 형성되는 것을 알 수 있었다.

Keywords: epoxy resin; cure temperature; filament winding

References
  • 1. Lubin GHandbook of Composites, Van Nostrand Reinhold Company, N.Y. (1982)
  •  
  • 2. Peters ST, Humphrey WD, Foral RFFilament Winding Composite Structure Fabrication, SAMPE (1991)
  •  
  • 3. Reinhart TJEngineered Materials Handbook Vol. 1, Composites, ASM International. OHIO (1987)
  •  
  • 4. Weatherhead RGFRP Technology, Applied Science (1980)
  •  
  • 5. Rosato DV, Grove CSFilament Winding: Its Development, Manufacture, Applications, and Design, Interscience Publishers, N.Y. (1964)
  •  
  • 6. Sheppard LM, Adv. Mater. Process, 132, 31 (1987)
  •  
  • 7. Moquet G, Lamalles JAIAA-81-1462
  •  
  • 8. Munjal AK, SAMPE Quarterly, Jan., 1 (1986)
  •  
  • 9. Sigur WA, SAMPE Quarterly, Jan., 25 (1986)
  •  
  • 10. Munjal AKASM/ESD Advanced Composites Conference, 309 (1985)
  •  
  • 11. Tackett EW, Merrell GA, Kulkarni SBAIAA-84-1351
  •  
  • 12. Vogt C, Munson WO, Wolcost FEAIAA-81-1417
  •  
  • 13. Sayles DC26th SAMPE Symposium, April 28-30, 325 (1981)
  •  
  • 14. Kaszyk JThe Epoxy Resin Formulations Training Manual, SPI, N.Y. (1984)
  •  
  • 15. Mazenko DM, Jexsen GA, McCormick PJ, SAMPE J., May, 28 (1987)
  •  
  • 16. Hollaway L, Romhi A, Gunn M, Compos. Structures, 16, 125 (1990)
  •  
  • 17. Adams RD, Peppiatt NA, J. Adhes., 9, 1 (1977)
  •  
  • 18. Chester RJ, Roberts JD, Int. J. Adhes. Adhes., 9(3), 129 (1989)
  •  
  • 19. Bradley WLApplication of Fracture MEchanics to Composite Materials, Ed. by K. Friedrich, pp. 159-187, Elsevier (1989)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(1): 55-64

    Published online Jan 25, 1995